ترغب بنشر مسار تعليمي؟ اضغط هنا

Ours could realistically be the generation to discover evidence of life beyond Earth. With this privileged potential comes responsibility. The magnitude of the question, are we alone?, and the public interest therein, opens the possibility that resul ts may be taken to imply more than the observations support, or than the observers intend. As life detection objectives become increasingly prominent in space sciences, it is essential to open a community dialog about how to convey information in a subject matter that is diverse, complicated, and has high potential to be sensationalized. Establishing best practices for communicating about life detection can serve to set reasonable expectations on the early stages of a hugely challenging endeavor, attach value to incremental steps along the path, and build public trust by making clear that false starts and dead ends are an expected and potentially productive part of the scientific process. Here, we endeavor to motivate and seed the discussion with basic considerations and offer an example of how such considerations might be incorporated and applied in a proof-of-concept-level framework. Everything mentioned herein, including the name of the confidence scale, is intended not as a prescription, but simply as the beginning of an important dialogue.
127 - James Green , Scott Boardsen , 2020
Characterizing habitable exoplanets and/or their moons is of paramount importance. Here we show the results of our magnetic field topological modeling which demonstrate that terrestrial exoplanet-exomoon coupled magnetospheres work together to protec t the early atmospheres of both the exoplanet and the exomoon. When exomoon magnetospheres are within the exoplanets magnetospheric cavity, the exomoon magnetosphere acts like a protective magnetic bubble providing an additional magnetopause confronting the stellar winds when the moon is on the dayside. In addition, magnetic reconnection would create a critical pathway for the atmosphere exchange between the early exoplanet and exomoon. When the exomoons magnetosphere is outside of the exoplanets magnetosphere it then becomes the first line of defense against strong stellar winds, reducing the exoplanets atmospheric loss to space. A brief discussion is given on how this type of exomoon would modify radio emissions from magnetized exoplanets.
WFIRST is the highest priority space mission of the Decadal review, however, it is unlikely to begin in this decade primarily due to a anticipated NASA budget that is unlikely to have sufficient resources to fund such a mission. For this reason we pr esent a lower cost mission that accomplishes all of the WFIRST science as described in the Design Reference Mission 1 with a probe class design. This is effort is motivated by a desire to begin WFIRST in a timely manner and within a budget that can fit within the assets available to NASA on a realistic basis. The design utilizes dichroics to form four focal planes all having the same field of view to use the majority of available photons from a 1.2 meter telescope.
In December 2010, NASA created a Science Definition Team (SDT) for WFIRST, the Wide Field Infra-Red Survey Telescope, recommended by the Astro 2010 Decadal Survey as the highest priority for a large space mission. The SDT was chartered to work with t he WFIRST Project Office at GSFC and the Program Office at JPL to produce a Design Reference Mission (DRM) for WFIRST. This paper describes an Interim DRM. The DRM will be completed in 2012.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا