ﻻ يوجد ملخص باللغة العربية
Characterizing habitable exoplanets and/or their moons is of paramount importance. Here we show the results of our magnetic field topological modeling which demonstrate that terrestrial exoplanet-exomoon coupled magnetospheres work together to protect the early atmospheres of both the exoplanet and the exomoon. When exomoon magnetospheres are within the exoplanets magnetospheric cavity, the exomoon magnetosphere acts like a protective magnetic bubble providing an additional magnetopause confronting the stellar winds when the moon is on the dayside. In addition, magnetic reconnection would create a critical pathway for the atmosphere exchange between the early exoplanet and exomoon. When the exomoons magnetosphere is outside of the exoplanets magnetosphere it then becomes the first line of defense against strong stellar winds, reducing the exoplanets atmospheric loss to space. A brief discussion is given on how this type of exomoon would modify radio emissions from magnetized exoplanets.
The current progress in the detection of terrestrial type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify
Eccentricity is an important orbital parameter. Understanding its effect on planetary climate and habitability is critical for us to search for a habitable world beyond our solar system. The orbital configurations of M-dwarf planets are always tidall
We present estimations of dipolar magnetic moments for terrestrial exoplanets using the Olson & Christiansen (2006) scaling law and assuming their interior structure is similar to Earth. We find that the dipolar moment of fast rotating planets (where
Exoplanet science is one of the most thriving fields of modern astrophysics. A major goal is the atmospheric characterization of dozens of small, terrestrial exoplanets in order to search for signatures in their atmospheres that indicate biological a
Assuming our Solar System as typical, exomoons may outnumber exoplanets. If their habitability fraction is similar, they would thus constitute the largest portion of habitable real estate in the Universe. Icy moons in our Solar System, such as Europa