ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a description of the Prototype All-Sky Imager (PASI), a backend correlator and imager of the first station of the Long Wavelength Array (LWA1). PASI cross-correlates a live stream of 260 dual-polarization dipole antennas of the LWA1, creat es all-sky images, and uploads them to the LWA-TV website in near real-time. PASI has recorded over 13,000 hours of all-sky images at frequencies between 10 and 88 MHz creating opportunities for new research and discoveries. We also report rate density and pulse energy density limits on transients at 38, 52, and 74 MHz, for pulse widths of 5 s. We limit transients at those frequencies with pulse energy densities of $>2.7times 10^{-23}$, $>1.1times 10^{-23}$, and $>2.8times 10^{-23}$ J m$^{-2}$ Hz$^{-1}$ to have rate densities $<1.2times10^{-4}$, $<5.6times10^{-4}$, and $<7.2times10^{-4}$ yr$^{-1}$ deg$^{-2}$
We present the findings from the Prototype All-Sky Imager (PASI), a backend correlator of the first station of the Long Wavelength Array (LWA1), which has recorded over 11,000 hours of all-sky images at frequencies between 25 and 75 MHz. In a search of this data for radio transients, we have found 49 long (10s of seconds) duration transients. Ten of these transients correlate both spatially and temporally with large meteors (fireballs), and their signatures suggest that fireballs emit a previously undiscovered low frequency, non-thermal pulse. This emission provides a new probe into the physics of meteors and identifies a new form of naturally occurring radio transient foreground.
As a backend to the first station of the Long Wavelength Array (LWA1) the Prototype All Sky Imager (PASI) has been imaging the sky $>$ -26$^{circ}$ declination during 34 Gamma Ray Bursts (GRBs) between January 2012 and May 2013. Using this data we we re able to put the most stringent limits to date on prompt low frequency emission from GRBs. While our limits depend on the zenith angle of the observed GRB, we estimate a 1$sigma$ RMS sensitivity of 68, 65 and 70 Jy for 5 second integrations at 37.9, 52.0, and 74.0 MHz at zenith. These limits are relevant for pulses $geq$ 5 s and are limited by dispersion smearing. For pulses of length 5 s we are limited to dispersion measures ($DM$s) $leq$ 220, 570, and 1,600 pc cm$^{-3}$ for the frequencies above. For pulses lasting longer than 5s, the $DM$ limits increase linearly with the duration of the pulse. We also report two interesting transients, which are, as of yet, of unknown origin, and are not coincident with any known GRBs. For general transients, we give rate density limits of $leq$ $7.5times10^{-3}$, $2.9times10^{-2}$, and $1.4times10^{-2}$ yr$^{-1}$ deg$^{-2}$ with pulse energy densities $>1.3times 10^{-22}$, $1.1times 10^{-22}$, and $1.4times 10^{-22}$ J m$^{-2}$ Hz$^{-1}$ and pulse widths of 5 s at the frequencies given above.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا