ترغب بنشر مسار تعليمي؟ اضغط هنا

Monitoring the Sky with the Prototype All-Sky Imager on the LWA1

469   0   0.0 ( 0 )
 نشر من قبل Kenneth Obenberger
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a description of the Prototype All-Sky Imager (PASI), a backend correlator and imager of the first station of the Long Wavelength Array (LWA1). PASI cross-correlates a live stream of 260 dual-polarization dipole antennas of the LWA1, creates all-sky images, and uploads them to the LWA-TV website in near real-time. PASI has recorded over 13,000 hours of all-sky images at frequencies between 10 and 88 MHz creating opportunities for new research and discoveries. We also report rate density and pulse energy density limits on transients at 38, 52, and 74 MHz, for pulse widths of 5 s. We limit transients at those frequencies with pulse energy densities of $>2.7times 10^{-23}$, $>1.1times 10^{-23}$, and $>2.8times 10^{-23}$ J m$^{-2}$ Hz$^{-1}$ to have rate densities $<1.2times10^{-4}$, $<5.6times10^{-4}$, and $<7.2times10^{-4}$ yr$^{-1}$ deg$^{-2}$



قيم البحث

اقرأ أيضاً

We present a survey of the radio sky accessible from the first station of the Long Wavelength Array (LWA1). Images are presented at nine frequencies between 35 and 80 MHz with spatial resolutions ranging from $4.7^circ$ to $2.0^circ$, respectively. T he maps cover the sky north of a declination of $-40^circ$ and represent the most modern systematic survey of the diffuse Galactic emission within this frequency range. We also combine our survey with other low frequency sky maps to create an updated model of the low frequency sky. Due to the low frequencies probed by our survey, the updated model better accounts for the effects of free-free absorption from Galactic ionized Hydrogen. A longer term motivation behind this survey is to understand the foreground emission that obscures the redshifted 21 cm transition of neutral hydrogen from the cosmic dark ages ($z>10$) and, at higher frequencies, the epoch of reionization ($z>6$).
The Millimeter Sky Transparency Imager (MiSTI) is a small millimeter-wave scanning telescope with a 25-cm diameter dish operating at 183 GHz. MiSTI is installed at Atacama, Chile, and it measures emission from atmospheric water vapor and its fluctuat ions to estimate atmospheric absorption in the millimeter to submillimeter. MiSTI observes the water vapor distribution at a spatial resolution of 0.5 deg, and it is sensitive enough to detect an excess path length of <~ 0.05 mm for an integration time of 1 s. By comparing the MiSTI measurements with those by a 220 GHz tipper, we validate that the 183 GHz measurements of MiSTI are correct, down to the level of any residual systematic errors in the 220 GHz measurements. Since 2008, MiSTI has provided real-time (every 1 hr) monitoring of the all-sky opacity distribution and atmospheric transmission curves in the (sub)millimeter through the internet, allowing to know the (sub)millimeter sky conditions at Atacama.
164 - M. Feroci 2009
SuperAGILE is the hard X-ray monitor of the AGILE gamma ray mission, in orbit since 23$^{rd}$ April 2007. It is an imaging experiment based on a set of four independent silicon strip detectors, equipped with one-dimensional coded masks, operating in the nominal energy range 18-60 keV. The main goal of SuperAGILE is the observation of cosmic sources simultaneously with the main gamma-ray AGILE experiment, the Gamma Ray Imaging Detector (GRID). Given its $sim$steradian-wide field of view and its $sim$15 mCrab day-sensitivity, SuperAGILE is also well suited for the long-term monitoring of Galactic compact objects and the detection of bright transients. The SuperAGILE detector properties and design allow for a 6 arcmin angular resolution in each of the two independent orthogonal projections of the celestial coordinates. Photon by photon data are continuously available by the experiment telemetry, and are used to derive images and fluxes of individual sources, with integration times depending on the source intensity and position in the field of view. In this paper we report on the main scientific results achieved by SuperAGILE over its first two years in orbit, until April 2009.
212 - Masaru Matsuoka 2009
The MAXI (Monitor of All-sky X-ray Image) mission is the first astronomical payload to be installed on the Japanese Experiment Module-Exposed Facility (JEM-EF) on the ISS. It is scheduled for launch in the middle of 2009 to monitor all-sky X-ray obje cts on every ISS orbit. MAXI will be more powerful than any previous X-ray All Sky Monitor (ASM) payloads, being able to monitor hundreds of AGN. MAXI will provide all sky images of X-ray sources of about 20 mCrab in the energy band of 2-30 keV from observation on one ISS orbit (90 min), about 4.5 mCrab for one day, and about 1 mCrab for one month. A final detectability of MAXI could be 0.2 mCrab for 2 year observations.
The future of radio astronomy will require instruments with large collecting areas for higher sensitivity, wide fields of view for faster survey speeds, and efficient computing and data rates relative to current capabilities. We describe the first su ccessful deployment of the E-field Parallel Imaging Correlator (EPIC) on the LWA station in Sevilleta, New Mexico, USA (LWA-SV). EPIC is a solution to the computational problem of large interferometers. By gridding and spatially Fourier transforming channelised electric fields from the antennas in real-time, EPIC removes the explicit cross multiplication of all pairs of antenna voltages to synthesize an aperture, reducing the computational scaling from $mathcal{O}(n_a^2)$ to $mathcal{O}(n_g log_2 n_g)$, where $n_a$ is the number of antennas and $n_g$ is the number of grid points. Not only does this save computational costs for dense arrays but it produces very high time resolution images in real time. The GPU-based implementation uses existing LWA-SV hardware and the high performance streaming framework, Bifrost. We examine the practical details of the EPIC deployment and verify the imaging performance by detecting a meteor impact on the atmosphere using continuous all-sky imaging at 50 ms time resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا