ترغب بنشر مسار تعليمي؟ اضغط هنا

Studies of individual quantum systems, which have led to considerable progress in our understanding of quantum physics, have traditionally been associated with atomic gases. In the last decades however, the emphasis has shifted towards solid-state sy stems, which are much more practical for applications. In particular, a new field has recently emerged that is concerned with the study of quantum systems based on single spins localized near point defects in crystalline solids. One such system is the nitrogen-vacancy (NV) defect in diamond. Initially used as an experimental breadboard for testing concepts of quantum physics and quantum computation, the NV defect was soon proposed as a sensitive magnetometer, capable of detecting minute magnetic fields, down to ultimate level of single spins. This atomic-sized magnetometer can be used as a standalone sensor, or integrated into an imaging system providing spatial resolution down to the atomic scale. Diamond-based instruments thus offer new pathways to probe the magnetism of matter from the mesoscale down to the nanoscale. This book chapter gives an overview of the field of diamond-based magnetic sensing and imaging, with an emphasis on already demonstrated applications of this technology. The chapter is divided into three main sections. In Section 2, the underlying physics and methods of diamond-based magnetometry are described. Section 3 is devoted to various experimental implementations that employ this new class of sensors for magnetic sensing and imaging. Finally, some recent applications are presented in Section 4.
After initial proof-of-principle demonstrations, optically pumped nitrogen-vacancy (NV) centres in diamond have been proposed as a non-invasive platform to achieve hyperpolarisation of nuclear spins in molecular samples over macroscopic volumes and e nhance the sensitivity in nuclear magnetic resonance (NMR) experiments. In this work, we model the process of polarisation of external samples by NV centres and theoretically evaluate their performance in a range of scenarios. We find that average nuclear spin polarisations exceeding 10% can in principle be generated over macroscopic sample volumes ($gtrsimmu$L) with a careful engineering of the systems geometry to maximise the diamond-sample contact area. The fabrication requirements and other practical challenges are discussed. We then explore the possibility of exploiting local polarisation enhancements in nano/micro-NMR experiments based on NV centres. For micro-NMR, we find that modest signal enhancements over thermal polarisation (by 1-2 orders of magnitude) can in essence be achieved with existing technology, with larger enhancements achievable via micro-structuring of the sample/substrate interface. However, there is generally no benefit for nano-NMR where the detection of statistical polarisation provides the largest signal-to-noise ratio. This work will guide future experimental efforts to integrate NV-based hyperpolarisation to NMR systems.
We report on a quantitative analysis of the magnetic field generated by a continuous current running in metallic micro-wires fabricated on an electrically insulating diamond substrate. A layer of nitrogen-vacancy (NV) centres engineered near the diam ond surface is employed to obtain spatial maps of the vector magnetic field, by measuring Zeeman shifts through optically-detected magnetic resonance spectroscopy. The in-plane magnetic field (i.e. parallel to the diamond surface) is found to be significantly weaker than predicted, while the out-of-plane field also exhibits an unexpected modulation. We show that the measured magnetic field is incompatible with Amperes circuital law or Gausss law for magnetism when we assume that the current is confined to the metal, independent of the details of the current density. This result was reproduced in several diamond samples, with a measured deviation from Amperes law by as much as 94(6)%. To resolve this apparent magnetic anomaly, we introduce a generalised description whereby the current is allowed to flow both above the NV sensing layer (including in the metallic wire) and below the NV layer (i.e. in the diamond). Inversion of the Biot-Savart law within this two-channel description leads to a unique solution for the two current densities, which completely explains the data, is consistent with the laws of classical electrodynamics and indicates a total NV-measured current that closely matches the electrically-measured current. However, this description also leads to the surprising conclusion that in certain circumstances the majority of the current appears to flow in the diamond substrate rather than in the metallic wire, and to spread laterally in the diamond by several micrometres away from the wire. No electrical conduction was observed between nearby test wires, ruling out a conventional conductivity effect. [...]
We present a study of the spin properties of dense layers of near-surface nitrogen-vacancy (NV) centres in diamond created by nitrogen ion implantation. The optically detected magnetic resonance contrast and linewidth, spin coherence time, and spin r elaxation time, are measured as a function of implantation energy, dose, annealing temperature and surface treatment. To track the presence of damage and surface-related spin defects, we perform in situ electron spin resonance spectroscopy through both double electron-electron resonance and cross-relaxation spectroscopy on the NV centres. We find that, for the energy ($4-30$~keV) and dose ($5times10^{11}-10^{13}$~ions/cm$^2$) ranges considered, the NV spin properties are mainly governed by the dose via residual implantation-induced paramagnetic defects, but that the resulting magnetic sensitivity is essentially independent of both dose and energy. We then show that the magnetic sensitivity is significantly improved by high-temperature annealing at $geq1100^circ$C. Moreover, the spin properties are not significantly affected by oxygen annealing, apart from the spin relaxation time, which is dramatically decreased. Finally, the average NV depth is determined by nuclear magnetic resonance measurements, giving $approx10$-17~nm at 4-6 keV implantation energy. This study sheds light on the optimal conditions to create dense layers of near-surface NV centres for high-sensitivity sensing and imaging applications.
The Dzyaloshinskii-Moriya Interaction (DMI) has recently attracted considerable interest owing to its fundamental role in the stabilization of chiral spin textures in ultrathin ferromagnets, which are interesting candidates for future spintronic tech nologies. Here we employ a scanning nano-magnetometer based on a single nitrogen-vacancy (NV) defect in diamond to locally probe the strength of the interfacial DMI in CoFeB/MgO ultrathin films grown on different heavy metal underlayers X=Ta,TaN, and W. By measuring the stray field emanating from DWs in micron-long wires of such materials, we observe deviations from the Bloch profile for TaN and W underlayers that are consistent with a positive DMI value favoring right-handed chiral spin structures. Moreover, our measurements suggest that the DMI constant might vary locally within a single sample, illustrating the importance of local probes for the study of magnetic order at the nanoscale.
The recent observation of current-induced domain wall (DW) motion with large velocity in ultrathin magnetic wires has opened new opportunities for spintronic devices. However, there is still no consensus on the underlying mechanisms of DW motion. Key to this debate is the DW structure, which can be of Bloch or Neel type, and dramatically affects the efficiency of the different proposed mechanisms. To date, most experiments aiming to address this question have relied on deducing the DW structure and chirality from its motion under additional in-plane applied fields, which is indirect and involves strong assumptions on its dynamics. Here we introduce a general method enabling direct, in situ, determination of the DW structure in ultrathin ferromagnets. It relies on local measurements of the stray field distribution above the DW using a scanning nanomagnetometer based on the Nitrogen-Vacancy defect in diamond. We first apply the method to a Ta/Co40Fe40B20(1 nm)/MgO magnetic wire and find clear signature of pure Bloch DWs. In contrast, we observe left-handed Neel DWs in a Pt/Co(0.6 nm)/AlOx wire, providing direct evidence for the presence of a sizable Dzyaloshinskii-Moriya interaction (DMI) at the Pt/Co interface. This method offers a new path for exploring interfacial DMI in ultrathin ferromagnets and elucidating the physics of DW motion under current.
We show that the orientation of nitrogen-vacancy (NV) defects in diamond can be efficiently controlled through chemical vapor deposition (CVD) growth on a (111)-oriented diamond substrate. More precisely, we demonstrate that spontaneously generated N V defects are oriented with a ~ 97 % probability along the [111] axis, corresponding to the most appealing orientation among the four possible crystallographic axes. Such a nearly perfect preferential orientation is explained by analyzing the diamond growth mechanism on a (111)-oriented substrate and could be extended to other types of defects. This work is a significant step towards the design of optimized diamond samples for quantum information and sensing applications.
We employ a scanning NV-center microscope to perform stray field imaging of bubble magnetic domains in a perpendicularly magnetized Pt/Co/AlOx trilayer with 6 {AA} of Co. The stray field created by the domain walls is quantitatively mapped with few-n anometer spatial resolution, with a probe-sample distance of about 100 nm. As an example of application, we show that it should be possible to determine the Bloch or Neel nature of the domain walls, which is of crucial importance to the understanding of current-controlled domain wall motion.
Thin-film ferromagnetic disks present a vortex spin structure whose dynamics, added to the small size (~10 nm) of their core, earned them intensive study. Here we use a scanning nitrogen-vacancy (NV) center microscope to quantitatively map the stray magnetic field above a 1 micron-diameter disk of permalloy, unambiguously revealing the vortex core. Analysis of both probe-to-sample distance and tip motion effects through stroboscopic measurements, allows us to compare directly our quantitative images to micromagnetic simulations of an ideal structure. Slight perturbations with respect to the perfect vortex structure are clearly detected either due to an applied in-plane magnetic field or imperfections of the magnetic structures. This work demonstrates the potential of scanning NV microscopy to map tiny stray field variations from nanostructures, providing a nanoscale, non-perturbative detection of their magnetic texture.
We report an experimental study of the longitudinal relaxation time ($T_1$) of the electron spin associated with single nitrogen-vacancy (NV) defects hosted in nanodiamonds (ND). We first show that $T_1$ decreases over three orders of magnitude when the ND size is reduced from 100 to 10 nm owing to the interaction of the NV electron spin with a bath of paramagnetic centers lying on the ND surface. We next tune the magnetic environment by decorating the ND surface with Gd$^{3+}$ ions and observe an efficient $T_{1}$-quenching, which demonstrates magnetic noise sensing with a single electron spin. We estimate a sensitivity down to $approx 14$ electron spins detected within 10 s, using a single NV defect hosted in a 10-nm-size ND. These results pave the way towards $T_1$-based nanoscale imaging of the spin density in biological samples.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا