ترغب بنشر مسار تعليمي؟ اضغط هنا

Amateur contributions to professional publications have increased exponentially over the last decades in the field of Planetary Astronomy. Here we review the different domains of the field in which collaborations between professional and amateur astr onomers are effective and regularly lead to scientific publications. We discuss the instruments, detectors, softwares and methodologies typically used by amateur astronomers to collect the scientific data in the different domains of interest. Amateur contributions to the monitoring of planets and interplanetary matter, characterization of asteroids and comets, as well as the determination of the physical properties of Kuiper Belt Objects and exoplanets are discussed.
Most known extrasolar planets (exoplanets) have been discovered using the radial velocity$^{bf 1,2}$ or transit$^{bf 3}$ methods. Both are biased towards planets that are relatively close to their parent stars, and studies find that around 17--30% (r efs 4, 5) of solar-like stars host a planet. Gravitational microlensing$^{bf 6rm{bf -}bf 9}$, on the other hand, probes planets that are further away from their stars. Recently, a population of planets that are unbound or very far from their stars was discovered by microlensing$^{bf 10}$. These planets are at least as numerous as the stars in the Milky Way$^{bf 10}$. Here we report a statistical analysis of microlensing data (gathered in 2002--07) that reveals the fraction of bound planets 0.5--10 AU (Sun--Earth distance) from their stars. We find that 17$_{bf -9}^{bf +6}$% of stars host Jupiter-mass planets (0.3--10 $MJ$, where $MJ {bf = 318}$ $Mearth$ and $Mearth$ is Earths mass). Cool Neptunes (10--30 $Mearth$) and super-Earths (5--10 $Mearth$) are even more common: their respective abundances per star are 52$_{bf -29}^{bf +22}$% and 62$_{bf -37}^{bf +35}$%. We conclude that stars are orbited by planets as a rule, rather than the exception.
222 - G. Tinetti 2011
A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life . EChO -the Exoplanet Characterisation Observatory- is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. EChO will build on observations by Hubble, Spitzer and groundbased telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. EChO will simultaneously observe a broad enough spectral region -from the visible to the mid-IR- to constrain from one single spectrum the temperature structure of the atmosphere and the abundances of the major molecular species. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules to retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures Teq up to 2000 K, to those of a few Earth masses, with Teq ~300 K. We have baselined a dispersive spectrograph design covering continuously the 0.4-16 micron spectral range in 6 channels (1 in the VIS, 5 in the IR), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1.5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to ~45 K. EChO will be placed in a grand halo orbit around L2. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework.
The MPF mission will provide a statistical census of exoplanets with masses greater than 0.1 Earth-masses and orbital separations ranging from 0.5AU to infinity. This includes analogs to all the Solar Systems planets except for Mercury, as well as mo st types of planets predicted by planet formation theories. Such a survey will provide results on the frequency of planets around all types of stars except those with short lifetimes. Close-in planets with separations < 0.5 AU are invisible to a space-based microlensing survey, but these can be found by Kepler. Other methods, including ground-based microlensing, cannot approach the comprehensive statistics on the mass and semi-major axis distribution of extrasolar planets that a space-based microlensing survey will provide. The terrestrial planet sensitivity of a ground-based microlensing survey is limited to the vicinity of the Einstein radius at 2-3 AU, and space-based imaging is needed to identify and determine the mass of the planetary host stars for the vast majority of planets discovered by microlensing. Thus, a space-based microlensing survey is likely to be the only way to gain a comprehensive understanding of the architecture of planetary systems, which is needed to understand planet formation and habitability. MPF can accomplish these objectives with proven technology and a cost of $333 million (excluding launch vehicle).
We observed the microlensing event MOA-2007-BLG-192 at high angular resolution in JHKs with the NACO adaptive optics system on the VLT while the object was still amplified by a factor 1.23 and then at baseline 18 months later. We analyzed and calibra ted the NACO photometry in the standard 2MASS system in order to accurately constrain the source and the lens star fluxes. We detect light from the host star of MOA-2007-BLG-192Lb, which significantly reduces the uncertainties in its char- acteristics as compared to earlier analyses. We find that MOA-2007-BLG-192L is most likely a very low mass late type M-dwarf (0.084 [+0.015] [-0.012] Modot) at a distance of 660 [+100] [-70] pc orbited by a 3.2 [+5.2] [-1.8] Moplus super-Earth at 0.66 [+0.51] [-0.22] AU. We then discuss the properties of this cold planetary system.
We present an analysis of seven primary transit observations of the hot Neptune GJ436b at 3.6, 4.5 and $8~mu$m obtained with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. After correcting for systematic effects, we fitted the light curves using the Markov Chain Monte Carlo technique. Combining these new data with the EPOXI, HST and ground-based $V, I, H$ and $K_s$ published observations, the range $0.5-10~mu$m can be covered. Due to the low level of activity of GJ436, the effect of starspots on the combination of transits at different epochs is negligible at the accuracy of the dataset. Representative climate models were calculated by using a three-dimensional, pseudo-spectral general circulation model with idealised thermal forcing. Simulated transit spectra of GJ436b were generated using line-by-line radiative transfer models including the opacities of the molecular species expected to be present in such a planetary atmosphere. A new, ab-initio calculated, linelist for hot ammonia has been used for the first time. The photometric data observed at multiple wavelengths can be interpreted with methane being the dominant absorption after molecular hydrogen, possibly with minor contributions from ammonia, water and other molecules. No clear evidence of carbon monoxide and dioxide is found from transit photometry. We discuss this result in the light of a recent paper where photochemical disequilibrium is hypothesised to interpret secondary transit photometric data. We show that the emission photometric data are not incompatible with the presence of abundant methane, but further spectroscopic data are desirable to confirm this scenario.
A space-based gravitational microlensing exoplanet survey will provide a statistical census of exoplanets with masses greater than 0.1 Earth-masses and orbital separations ranging from 0.5AU to infinity. This includes analogs to all the Solar Systems planets except for Mercury, as well as most types of planets predicted by planet formation theories. Such a survey will provide results on the frequency of planets around all types of stars except those with short lifetimes. Close-in planets with separations < 0.5 AU are invisible to a space-based microlensing survey, but these can be found by Kepler. Other methods, including ground-based microlensing, cannot approach the comprehensive statistics on the mass and semi-major axis distribution of extrasolar planets that a space-based microlensing survey will provide. The terrestrial planet sensitivity of a ground-based microlensing survey is limited to the vicinity of the Einstein radius at 2-3 AU, and space-based imaging is needed to identify and determine the mass of the planetary host stars for the vast majority of planets discovered by microlensing. Thus, a space-based microlensing survey is likely to be the only way to gain a comprehensive understanding of the architecture of planetary systems, which is needed to understand planet formation and habitability. The proposed Microlensing Planet Finder (MPF) mission is an example of a space-based microlensing survey that can accomplish these objectives with proven technology and a cost of under $300 million (excluding launch vehicle).
A space-based gravitational microlensing exoplanet survey will provide a statistical census of exoplanets with masses down to 0.1 Earth-masses and orbital separations ranging from 0.5AU to infinity. This includes analogs to all the Solar Systems plan ets except for Mercury, as well as most types of planets predicted by planet formation theories. Such a survey will provide results on the frequency of planets around all types of stars except those with short lifetimes. Close-in planets with separations < 0.5 AU are invisible to a space-based microlensing survey, but these can be found by Kepler. Other methods, including ground-based microlensing, cannot approach the comprehensive statistics on the mass and semi-major axis distribution of extrasolar planets that a space-based microlensing survey will provide. The terrestrial planet sensitivity of a ground-based microlensing survey is limited to the vicinity of the Einstein radius at 2-3 AU, and space-based imaging is needed to identify and determine the mass of the planetary host stars for the vast majority of planets discovered by microlensing. Thus, a space-based microlensing survey is likely to be the only way to gain a comprehensive understanding of the nature of planetary systems, which is needed to understand planet formation and habitability. The proposed Microlensing Planet Finder (MPF) mission is an example of a space-based microlensing survey that can accomplish these objectives with proven technology and a cost that fits comfortably under the NASA Discovery Program cost cap.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا