ترغب بنشر مسار تعليمي؟ اضغط هنا

Methane in the atmosphere of the transiting hot Neptune GJ436b?

132   0   0.0 ( 0 )
 نشر من قبل Jean Philippe Beaulieu R
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of seven primary transit observations of the hot Neptune GJ436b at 3.6, 4.5 and $8~mu$m obtained with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. After correcting for systematic effects, we fitted the light curves using the Markov Chain Monte Carlo technique. Combining these new data with the EPOXI, HST and ground-based $V, I, H$ and $K_s$ published observations, the range $0.5-10~mu$m can be covered. Due to the low level of activity of GJ436, the effect of starspots on the combination of transits at different epochs is negligible at the accuracy of the dataset. Representative climate models were calculated by using a three-dimensional, pseudo-spectral general circulation model with idealised thermal forcing. Simulated transit spectra of GJ436b were generated using line-by-line radiative transfer models including the opacities of the molecular species expected to be present in such a planetary atmosphere. A new, ab-initio calculated, linelist for hot ammonia has been used for the first time. The photometric data observed at multiple wavelengths can be interpreted with methane being the dominant absorption after molecular hydrogen, possibly with minor contributions from ammonia, water and other molecules. No clear evidence of carbon monoxide and dioxide is found from transit photometry. We discuss this result in the light of a recent paper where photochemical disequilibrium is hypothesised to interpret secondary transit photometric data. We show that the emission photometric data are not incompatible with the presence of abundant methane, but further spectroscopic data are desirable to confirm this scenario.



قيم البحث

اقرأ أيضاً

GJ436b is a unique member of the transiting extrasolar planet population being one of the smallest and least irradiated and possessing an eccentric orbit. Because of its size, mass and density, GJ436b could plausibly have an atmospheric metallicity s imilar to Neptune (20-60 times solar abundances), which makes it an ideal target to study the effects of atmospheric metallicity on dynamics and radiative transfer in an extrasolar planetary atmosphere. We present three-dimensional atmospheric circulation models that include realistic non-gray radiative transfer for 1, 3, 10, 30, and 50 times solar atmospheric metallicity cases of GJ436b. Low metallicity models (1 and 3 times solar) show little day/night temperature variation and strong high-latitude jets. In contrast, higher metallicity models (30 and 50 times solar) exhibit day/night temperature variations and a strong equatorial jet. Spectra and light curves produced from these simulations show strong orbital phase dependencies in the 50 times solar case and negligible variations with orbital phase in the 1 times solar case. Comparisons between the predicted planet/star flux ratio from these models and current secondary eclipse measurements support a high metallicity atmosphere (30-50 times solar abundances) with disequilibrium carbon chemistry at play for GJ436b. Regardless of the actual atmospheric composition of GJ436b, our models serve to illuminate how metallicity influences the atmospheric circulation for a broad range of warm extrasolar planets.
Non-rocky sub-jovian exoplanets in high irradiation environments are rare. LTT 9979b, also known as TESS Object of Interest (TOI) 193.01, is one of the few such planets discovered to date, and the first example of an ultra-hot Neptune. The planets bu lk density indicates that it has a substantial atmosphere, so to investigate its atmospheric composition and shed further light on its origin, we obtained {it Spitzer} IRAC secondary eclipse observations of LTT 9979b at 3.6 and 4.5 $mu$m. We combined the {it Spitzer} observations with a measurement of the secondary eclipse in the {it TESS} bandpass. The resulting secondary eclipse spectrum strongly prefers a model that includes CO absorption over a blackbody spectrum, incidentally making LTT 9979b the first {it TESS} exoplanet (and the first ultra-hot Neptune) with evidence of a spectral feature in its atmosphere. We did not find evidence of a thermal inversion, at odds with expectations based on the atmospheres of similarly-irradiated hot Jupiters. We also report a nominal dayside brightness temperature of 2305 $pm$ 141 K (based on the 3.6 $mu$m secondary eclipse measurement), and we constrained the planets orbital eccentricity to $e < 0.01$ at the 99.7 % confidence level. Together with our analysis of LTT 9979bs thermal phase curves reported in a companion paper, our results set the stage for similar investigations of a larger sample of exoplanets discovered in the hot Neptune desert, investigations which are key to uncovering the origin of this population.
About one out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultra-short-period planet (Sanchis-ojeda et al. 2014; Winn et al. 2018). All of the previously known ultra-short-period planets are either hot Jupiters, with sizes above 10 Earth radii (Re), or apparently rocky planets smaller than 2 Re. Such lack of planets of intermediate size (the hot Neptune desert) has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here, we report the discovery of an ultra-short-period planet with a radius of 4.6 Re and a mass of 29 Me, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite (Ricker et al. 2015) revealed transits of the bright Sun-like star starname, every 0.79 days. The planets mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0^(+2.7)_(-2.9)% of the total mass. With an equilibrium temperature around 2000 K, it is unclear how this ultra-hot Neptune managed to retain such an envelope. Follow-up observations of the planets atmosphere to better understand its origin and physical nature will be facilitated by the stars brightness (Vmag=9.8).
Hot Jupiters are rarely accompanied by other planets within a factor of a few in orbital distance. Previously, only two such systems have been found. Here, we report the discovery of a third system using data from the Transiting Exoplanet Survey Sate llite (TESS). The host star, TOI-1130, is an 11th magnitude K-dwarf in the Gaia G band. It has two transiting planets: a Neptune-sized planet ($3.65pm 0.10$ $R_E$) with a 4.1-day period, and a hot Jupiter ($1.50^{+0.27}_{-0.22}$ $R_J$) with an 8.4-day period. Precise radial-velocity observations show that the mass of the hot Jupiter is $0.974^{+0.043}_{-0.044}$ $M_J$. For the inner Neptune, the data provide only an upper limit on the mass of 0.17 $M_J$ (3$sigma$). Nevertheless, we are confident the inner planet is real, based on follow-up ground-based photometry and adaptive optics imaging that rule out other plausible sources of the TESS transit signal. The unusual planetary architecture of and the brightness of the host star make TOI-1130 a good test case for planet formation theories, and an attractive target for future spectroscopic observations.
The atmospheric pressure-temperature profiles for transiting giant planets cross a range of chemical transitions. Here we show that the particular shape of these irradiated profiles for warm giant planets below 1300 K lead to striking differences in the behavior of non-equilibrium chemistry compared to brown dwarfs of similar temperatures. Our particular focus is H$_2$O, CO, CH$_4$, CO$_2$, and NH$_3$ in Jupiter- and Neptune-class planets. We show the cooling history of a planet, which depends most significantly on planetary mass and age, can have a dominant effect on abundances in the visible atmosphere, often swamping trends one might expect based on Teq alone. The onset of detectable CH$_4$ in spectra can be delayed to lower Teq for some planets compared to equilibrium, or pushed to higher Teq. The detectability of NH$_3$ is typically enhanced compared to equilibrium expectations, which is opposite to the brown dwarf case. We find that both CH$_4$ and NH$_3$ can become detectable at around the same Teq (at Teq values that vary with mass and metallicity) whereas these onset temperatures are widely spaced for brown dwarfs. We suggest observational strategies to search for atmospheric trends and stress that non-equilibrium chemistry and clouds can serve as probes of atmospheric physics. As examples of atmospheric complexity, we assess three Neptune-class planets GJ 436b, GJ 3470b, and WASP-107, all around Teq=700 K. Tidal heating due to eccentricity damping in all three planets heats the deep atmosphere by thousands of degrees, and may explain the absence of CH$_4$ in these cool atmospheres. Atmospheric abundances must be interpreted in the context of physical characteristics of the planet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا