ﻻ يوجد ملخص باللغة العربية
A space-based gravitational microlensing exoplanet survey will provide a statistical census of exoplanets with masses greater than 0.1 Earth-masses and orbital separations ranging from 0.5AU to infinity. This includes analogs to all the Solar Systems planets except for Mercury, as well as most types of planets predicted by planet formation theories. Such a survey will provide results on the frequency of planets around all types of stars except those with short lifetimes. Close-in planets with separations < 0.5 AU are invisible to a space-based microlensing survey, but these can be found by Kepler. Other methods, including ground-based microlensing, cannot approach the comprehensive statistics on the mass and semi-major axis distribution of extrasolar planets that a space-based microlensing survey will provide. The terrestrial planet sensitivity of a ground-based microlensing survey is limited to the vicinity of the Einstein radius at 2-3 AU, and space-based imaging is needed to identify and determine the mass of the planetary host stars for the vast majority of planets discovered by microlensing. Thus, a space-based microlensing survey is likely to be the only way to gain a comprehensive understanding of the architecture of planetary systems, which is needed to understand planet formation and habitability. The proposed Microlensing Planet Finder (MPF) mission is an example of a space-based microlensing survey that can accomplish these objectives with proven technology and a cost of under $300 million (excluding launch vehicle).
The MPF mission will provide a statistical census of exoplanets with masses greater than 0.1 Earth-masses and orbital separations ranging from 0.5AU to infinity. This includes analogs to all the Solar Systems planets except for Mercury, as well as mo
A space-based gravitational microlensing exoplanet survey will provide a statistical census of exoplanets with masses down to 0.1 Earth-masses and orbital separations ranging from 0.5AU to infinity. This includes analogs to all the Solar Systems plan
The SHINE project is a 500-star survey performed with SPHERE on the VLT for the purpose of directly detecting new substellar companions and understanding their formation and early evolution. Here we present an initial statistical analysis for a subsa
The textit{Nancy Grace Roman Space Telescope} (textit{ Roman}) will provide an enormous number of microlensing light curves with much better photometric precisions than ongoing ground-based observations. Such light curves will enable us to observe hi
We use nearly 20 years of photometry obtained by the OGLE survey to measure the occurrence rate of wide-orbit (or ice giant) microlensing planets, i.e., with separations from ~5 AU to ~15 AU and mass-ratios from $10^{-4}$ to 0.033. In a sample of 311