ترغب بنشر مسار تعليمي؟ اضغط هنا

177 - P. Chainakun , A. J. Young 2015
We present an X-ray spectral and timing model to investigate the broad and variable iron line seen in the high flux state of Mrk 335. The model consists of a variable X-ray source positioned along the rotation axis of the black hole that illuminates the accretion disc producing a back-scattered, ionized reflection spectrum. We compute time lags including full dilution effects and perform simultaneous fitting of the 2-10 keV spectrum and the frequency-dependent time lags of 2.5-4 vs. 4-6.5 keV bands. The best-fitting parameters are consistent with a black hole mass of approximately 1.3 x 10^7 M_sun, disc inclination of 45 degrees and the photon index of the direct continuum of 2.4. The iron abundance is 0.5 and the ionization parameter is 10^3 erg cm / s at the innermost part of the disc and decreases further out. The X-ray source height is very small, approximately 2 r_g. Furthermore, we fit the Fe L lags simultaneously with the 0.3-10 keV spectrum. The key parameters are comparable to those previously obtained. We also report the differences below 2 keV using the xillver and reflionx models which could affect the interpretation of the soft excess. While simultaneously fitting spectroscopic and timing data can break the degeneracy between the source height and the black hole mass, we find that the measurements of the source height and the central mass significantly depend on the ionization state of the disc and are possibly model-dependent.
PSR B0823+26, a 0.53-s radio pulsar, displays a host of emission phenomena over timescales of seconds to (at least) hours, including nulling, subpulse drifting, and mode-changing. Studying pulsars like PSR B0823+26 provides further insight into the r elationship between these various emission phenomena and what they might teach us about pulsar magnetospheres. Here we report on the LOFAR discovery that PSR B0823+26 has a weak and sporadically emitting quiet (Q) emission mode that is over 100 times weaker (on average) and has a nulling fraction forty-times greater than that of the more regularly-emitting bright (B) mode. Previously, the pulsar has been undetected in the Q-mode, and was assumed to be nulling continuously. PSR B0823+26 shows a further decrease in average flux just before the transition into the B-mode, and perhaps truly turns off completely at these times. Furthermore, simultaneous observations taken with the LOFAR, Westerbork, Lovell, and Effelsberg telescopes between 110 MHz and 2.7 GHz demonstrate that the transition between the Q-mode and B-mode occurs within one single rotation of the neutron star, and that it is concurrent across the range of frequencies observed.
Cygnus A, the nearest truly powerful radio galaxy, resides at the centre of a massive galaxy cluster. Chandra X-ray observations reveal its cocoon shocks, radio lobe cavities and an X-ray jet, which are discussed here. It is argued that X-ray emissio n from the outer regions of the cocoon shocks is nonthermal. The X-ray jets are best interpreted as synchrotron emission, suggesting that they, rather than the radio jets, are the path of energy flow from the nucleus to the hotspots. In that case, a model shows that the jet flow is non-relativistic and carries in excess of one solar mass per year.
Electrochemical supercapacitors utilizing {alpha}-MnO2 offer the possibility of both high power density and high energy density. Unfortunately, the mechanism of electrochemical charge storage in {alpha}-MnO2 and the effect of operating conditions on the charge storage mechanism are generally not well understood. Here, we present the first detailed charge storage mechanism of {alpha}-MnO2 and explain the capacity differences between {alpha}- and {beta}-MnO2 using a combined theoretical electrochemical and band structure analysis. We identify the importance of the band gap, work function, the point of zero charge, and the tunnel sizes of the electrode material, as well as the pH and stability window of the electrolyte in determining the viability of a given electrode material. The high capacity of {alpha}-MnO2 results from cation induced charge-switching states in the band gap that overlap with the scanned potential allowed by the electrolyte. The charge-switching states originate from interstitial and substitutional cations (H+, Li+, Na+, and K+) incorporated into the material. Interstitial cations are found to induce charge-switching states by stabilizing Mn-O antibonding orbitals from the conduction band. Substitutional cations interact with O[2p] dangling bonds that are destabilized from the valence band by Mn vacancies to induce charge-switching states. We calculate the equilibrium electrochemical potentials at which these states are reduced and predict the effect of the electrochemical operating conditions on their contribution to charge storage. The mechanism and theoretical approach we report is general and can be used to computationally screen new materials for improved charge storage via ion incorporation.
We prove a Schwarz lemma for a domain E in 3-dimensional complex space that arises in connection with a problem in H infinity control theory. We describe a class of automorphisms of E and determine the distinguished boundary of E. We obtain a type of Schwarz-Pick lemma for a two by two mu-synthesis problem.
PKS B2152-699 has radio power characteristic of sources that dominate radio feedback. We present new deep ATCA, Chandra and optical observations, and test the feedback model. We report the first high-resolution observations of the radio jet. The inne r jet extends ~8.5 kpc towards an optical emission-line High Ionization Cloud (HIC) before taking a zig-zag path to an offset position. Jet X-ray synchrotron radiation is seen. The HIC is associated with 0.3 keV X-ray gas of anomalously low metallicity. On larger scales the radio galaxy displays all three X-ray features that together confirm supersonic expansion of the lobes into the external medium: gas cavities, inverse-Compton emission showing excess internal lobe pressure, and high-contrast arms of temperature above the ~1 keV ambient medium. The well-formed S lobe on the counterjet side is expanding with a Mach number 2.2-3. We estimate a cavity power ~3x10^43 ergs/s, which falls well below previously reported correlations with radio power. The total inferred time-averaged jet power, ~4x10^44 ergs/s, is dominated by the kinetic and thermal energy of shocked gas, and if used instead would bring the source into better agreement with the correlations. The S hotspot is the more complex, with a spiral polarization structure. Its bright peak emits synchrotron X-rays. The fainter N hotspot is particularly interesting, with X-rays offset in the direction of the incoming jet by ~1 arcsec relative to the radio peak. Here modest (delta ~ 6) relativistic beaming and a steep radio spectrum cause the jet to be X-ray bright through inverse-Compton scattering before it decelerates. With such beaming, a modest proton content or small departure from minimum energy in the jet will align estimates of the instantaneous and time-averaged jet power. The hotspots suggest acceleration of electrons to a maximum energy ~10^13 eV in the jet termination shocks.
We present in this work a simple Quantum Well (QW) structure consisting of GaAs wells with AlGaAs barriers as a probe for measuring the performance of arsine purifiers within a MetalOrganic Vapour Phase Epitaxy system. Comparisons between two differe nt commercially available purifiers are based on the analysis of low temperature photoluminescence emission spectra from thick QWs, grown on GaAs substrates misoriented slightly from (100). Neutral excitons emitted from these structures show extremely narrow linewidths, comparable to those which can be obtained by Molecular Beam Epitaxy in an ultra-high vacuum environment, suggesting that purifications well below the 1ppb level are needed to achieve high quality quantum well growth.
Graphene is one of the stiffest known materials, with a Youngs modulus of 1 TPa, making it an ideal candidate for use as a reinforcement in high-performance composites. However, being a one-atom thick crystalline material, graphene poses several fund amental questions: (1) can decades of research on carbon-based composites be applied to such an ultimately-thin crystalline material? (2) is continuum mechanics used traditionally with composites still valid at the atomic level? (3) how does the matrix interact with the graphene crystals and what kind of theoretical description is appropriate? We have demonstrated unambiguously that stress transfer takes place from the polymer matrix to monolayer graphene, showing that the graphene acts as a reinforcing phase. We have also modeled the behavior using shear-lag theory, showing that graphene monolayer nanocomposites can be analyzed using continuum mechanics. Additionally, we have been able to monitor stress transfer efficiency and breakdown of the graphene/polymer interface.
We report on the optical properties of a newly developed site-controlled InGaAs Dots in GaAs barriers grown in pre-patterned pyramidal recesses by metalorganic vapour phase epitaxy. The inhomogeneous broadening of excitonic emission from an ensemble of quantum dots is found to be extremely narrow, with a standard deviation of 1.19 meV. A dramatic improvement in the spectral purity of emission lines from individual dots is also reported (18-30 ueV) when compared to the state-of-the-art for site controlled quantum dots.
In this paper we report on the optical properties of site controlled InGaAs dots with GaAs barriers grown in pyramidal recesses by metalorganic vapour phase epitaxy. The inhomogeneous broadening of excitonic emission from an ensemble of quantum dots is found to be unusually narrow, with a standard deviation of 1.19 meV, and spectral purity of emission lines from individual dots is found to be very high (18-30 ueV), in contrast with other site-controlled systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا