ترغب بنشر مسار تعليمي؟ اضغط هنا

282 - E.A. Helder 2013
We present a proper motion study of the eastern shock-region of the supernova remnant RCW 86 (MSH 14-63, G315.4-2.3), based on optical observations carried out with VLT/FORS2 in 2007 and 2010. For both the northeastern and southeastern regions, we me asure an average proper motion of H-alpha filaments of 0.10 +/- 0.02 arcsec/yr, corresponding to 1200 +/- 200 km/s at 2.5kpc. There is substantial variation in the derived proper motions, indicating shock velocities ranging from just below 700 km/s to above 2200 km/s. The optical proper motion is lower than the previously measured X-ray proper motion of northeastern region. The new measurements are consistent with the previously measured proton temperature of 2.3 +/- 0.3 keV, assuming no cosmic-ray acceleration. However, within the uncertainties, moderately efficient (< 27 per cent) shock acceleration is still possible. The combination of optical proper motion and proton temperature rule out the possibility that RCW 86 has a distance less than 1.5kpc. The similarity of the proper motions in the northeast and southeast is peculiar, given the different densities and X-ray emission properties of the regions. The northeastern region has lower densities and the X-ray emission is synchrotron dominated, suggesting that the shock velocities should be higher than in the southeastern, thermal X-ray dominated, region. A possible solution is that the H-alpha emitting filaments are biased toward denser regions, with lower shock velocities. Alternatively, in the northeast the shock velocity may have decreased rapidly during the past 200yr, and the X-ray synchrotron emission is an afterglow from a period when the shock velocity was higher.
Several young supernova remnants (SNRs) have recently been detected in the high-energy and very-high-energy gamma-ray domains. As exemplified by RX J1713.7-3946, the nature of this emission has been hotly debated, and direct evidence for the efficien t acceleration of cosmic-ray protons at the SNR shocks still remains elusive. We analyzed more than 40 months of data acquired by the Large Area Telescope (LAT) on-board the Fermi Gamma-Ray Space Telescope in the HE domain, and gathered all of the relevant multi-wavelength (from radio to VHE gamma-rays) information about the broadband nonthermal emission from RCW 86. For this purpose, we re-analyzed the archival X-ray data from the ASCA/Gas Imaging Spectrometer (GIS), the XMM-Newton/EPIC-MOS, and the RXTE/Proportional Counter Array (PCA). Beyond the expected Galactic diffuse background, no significant gamma-ray emission in the direction of RCW 86 is detected in any of the 0.1-1, 1-10 and 10-100 GeV Fermi-LAT maps. In the hadronic scenario, the derived HE upper limits together with the HESS measurements in the VHE domain can only be accommodated by a spectral index Gamma <= 1.8, i.e. a value in-between the standard (test-particle) index and the asymptotic limit of theoretical particle spectra in the case of strongly modified shocks. The interpretation of the gamma-ray emission by inverse Compton scattering of high energy electrons reproduces the multi-wavelength data using a reasonable value for the average magnetic field of 15-25 muG. For these two scenarios, we assessed the level of acceleration efficiency. We discuss these results in the light of existing estimates of the magnetic field strength, the effective density and the acceleration efficiency in RCW 86.
Aims: We study the supernova remnant 0506-68 in order to obtain detailed information about, among other things, the ionisation state and age of the ionised plasma. Methods: Using the Reflection Grating Spectrometer (RGS) onboard the XMM-Newton satell ite we are able to take detailed spectra of the remnant. In addition, we use the MOS data to obtain spectral information at higher energies. Results: The spectrum shows signs of recombination and we derive the conditions for which the remnant and SNR in general are able to cool rapidly enough to become over-ionised. The elemental abundances found are mostly in agreement with the mean LMC abundances. Our models and calculations favour the lower age estimate mentioned in the literature of $sim4000$ year.
Many fast supernova remnant shocks show spectra dominated by Balmer lines. The H$alpha$ profiles have a narrow component explained by direct excitations and a thermally Doppler broadened component due to atoms that undergo charge exchange in the post -shock region. However, the standard model does not take into account the cosmic-ray shock precursor, which compresses and accelerates plasma ahead of the shock. In strong precursors with sufficiently high densities, the processes of charge exchange, excitation and ionization will affect the widths of both narrow and broad line components. Moreover, the difference in velocity between the neutrals and the precursor plasma gives rise to frictional heating due to charge exchange and ionization in the precursor. In extreme cases, all neutrals can be ionized by the precursor. In this paper we compute the ion and electron heating for a wide range of shock parameters, along with the velocity distribution of the neutrals that reach the shock. Our calculations predict very large narrow component widths for some shocks with efficient acceleration, along with changes in the broad- to-narrow intensity ratio used as a diagnostic for the electron-ion temperature ratio. Balmer lines may therefore provide a unique diagnostic of precursor properties. We show that heating by neutrals in the precursor can account for the observed H$alpha$ narrow component widths, and that the acceleration efficiency is modest in most Balmer line shocks observed thus far.
96 - M.M. Hohle , F. Haberl , J. Vink 2010
Since the last phase coherent timing solution of the nearby radio-quiet isolated neutron star RX J0720.4-3125 six new XMM-Newton and three Chandra observations were carried out. The phase coherent timing solutions from previous authors were performed without restricting to a fixed energy band. However, we recently showed that the phase residuals are energy dependent, and thus phase coherent solutions must be computed referring always to the same energy band. We updated the phase coherent timing solution for RX J0720.4-3125 by including the recent XMM-Newton EPIC-pn, MOS1, MOS2 and Chandra ACIS data in the energy range 400-1000~eV. Altogether these observations cover a time span of almost 10~yrs. A further timing solution was obtained including the ROSAT pointed data. In this case, observations cover a time span of $approx$16~yrs. To illustrate the timing differences between the soft band (120-400~eV) and the hard band (400-1000~eV) a timing solution for the soft band is also presented and the results are verified using a $mathrm{Z_{n}^{2}}$ test. In contrast to previous work, we obtain almost identical solutions whether or not we include the ROSAT or Chandra data. Thanks to the restriction to the hard band, the data points from EPIC-pn are in better agreement with those from MOS1, MOS2 and Chandra than in previous works. In general the phase residuals are still large and vary with time. In particular, the latest XMM-Newton and Chandra data show that the phase residuals have attained relatively large and negative values.
176 - M.M. Hohle , F. Haberl , J. Vink 2009
In the past, the isolated, radio-quiet neutron star RX J0720.4-3125 showed variations in the spectral parameters (apparent radius, temperature of the emitting area and equivalent width of the absorption feature) seen in the X-ray spectra, not only du ring the spin period of 8.39s, but also over time scales of years. New X-ray observations of RX J0720.4-3125 with XMM Newton extend the coverage to about 7.5 years with the latest pointing performed in November 2007. Out of a total of fourteen available EPIC-pn datasets, eleven have been obtained with an identical instrumental setup (full frame read-out mode with thin filter), and are best suited for a comparative investigations of the spectral and timing properties of this enigmatic X-ray pulsar. We analysed the new XMM Newton observations together with archival data in order to follow the spectral and temporal evolution of RX J0720.4-3125 All XMM-Newton data were reduced with the standard XMM-SAS software package. A systematic and consistent data reduction of all these observations was emphasised in order to reduce systematic errors as far as possible. We investigate the phase residuals derived from data from different energy bands using different timing solutions for the spin period evolution and confirm the phase lag between hard and soft photons. The phase shift in the X-ray pulses between hard and soft photons varies with time and changes sign around MJD=52800 days, regardless of the chosen timing solution. The phase residuals[abridge]
Supernova remnants (SNR) are now widely believed to be a source of cosmic rays (CRs) up to an energy of 1 PeV. The magnetic fields required to accelerate CRs to sufficiently high energies need to be much higher than can result from compression of the circumstellar medium (CSM) by a factor 4, as is the case in strong shocks. Non-thermal synchrotron maps of these regions indicate that indeed the magnetic field is much stronger, and for young SNRs has a dominant radial component while for old SNRs it is mainly toroidal. How these magnetic fields get enhanced, or why the field orientation is mainly radial for young remnants, is not yet fully understood. We use an adaptive mesh refinement MHD code, AMRVAC, to simulate the evolution of supernova remnants and to see if we can reproduce a mainly radial magnetic field in early stages of evolution. We follow the evolution of the SNR with three different configurations of the initial magnetic field in the CSM: an initially mainly toroidal field, a turbulent magnetic field, and a field parallel to the symmetry axis. Although for the latter two topologies a significant radial field component arises at the contact discontinuity due to the Rayleigh-Taylor instability, no radial component can be seen out to the forward shock. Ideal MHD appears not sufficient to explain observations. Possibly a higher compression ratio and additional turbulence due to dominant presence of CRs can help us to better reproduce the observations in future studies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا