ترغب بنشر مسار تعليمي؟ اضغط هنا

Updated phase coherent timing solution of the isolated neutron star RX J0720.4-3125 using recent XMM-Newton and Chandra observations

122   0   0.0 ( 0 )
 نشر من قبل Markus Matthias Hohle
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the last phase coherent timing solution of the nearby radio-quiet isolated neutron star RX J0720.4-3125 six new XMM-Newton and three Chandra observations were carried out. The phase coherent timing solutions from previous authors were performed without restricting to a fixed energy band. However, we recently showed that the phase residuals are energy dependent, and thus phase coherent solutions must be computed referring always to the same energy band. We updated the phase coherent timing solution for RX J0720.4-3125 by including the recent XMM-Newton EPIC-pn, MOS1, MOS2 and Chandra ACIS data in the energy range 400-1000~eV. Altogether these observations cover a time span of almost 10~yrs. A further timing solution was obtained including the ROSAT pointed data. In this case, observations cover a time span of $approx$16~yrs. To illustrate the timing differences between the soft band (120-400~eV) and the hard band (400-1000~eV) a timing solution for the soft band is also presented and the results are verified using a $mathrm{Z_{n}^{2}}$ test. In contrast to previous work, we obtain almost identical solutions whether or not we include the ROSAT or Chandra data. Thanks to the restriction to the hard band, the data points from EPIC-pn are in better agreement with those from MOS1, MOS2 and Chandra than in previous works. In general the phase residuals are still large and vary with time. In particular, the latest XMM-Newton and Chandra data show that the phase residuals have attained relatively large and negative values.



قيم البحث

اقرأ أيضاً

112 - Silvia Zane 2002
We present a combined analysis of XMM-Newton, Chandra and Rosat observations of the isolated neutron star RXJ0720.4-3125, spanning a total period of sim 7 years. We develop a maximum likelihood periodogramme for our analysis based on the Delta C-stat istic and the maximum likelihood method, which are appropriate for the treatment of sparse event lists. Our results have been checked a posteriori by folding a further BeppoSAX dataset with the period predicted at the time of that observation: the phase is found to be consistent. The study of the spin history and the measure of the spin-down rate is of extreme importance in discriminating between the possible mechanisms suggested for the nature of the X-ray emission. The value of dot P, here measured for the first time, is approx 10^{-14} s/s. This value can not be explained in terms of torque from a fossil disk. When interpreted in terms of dipolar losses, it gives a magnetic field of B approx 10^{13} G, making also implausible that the source is accreting from the underdense surroundings. On the other hand, we also find unlikely that the field decayed from a much larger value (Bapprox 10^{15} G, as expected for a magnetar powered by dissipation of a superstrong field) since this scenario predicts a source age of approx 10^4 yrs, too young to match the observed X-ray luminosity. The observed properties are more compatible with a scenario in which the source is approx 10^6 yrs old, and its magnetic field has not changed substantially over the lifetime.
70 - Silvia Zane 2002
We present a combined analysis of XMM-Newton, Chandra and Rosat observations of the isolated neutron star RX J0720.4-3125, spanning a total period of sim 7 years. We develop a maximum likelihood periodogramme based on Delta C statistic and maximum li kelihood method, which are appropriate for sparse event lists. As an a posteriori check, we have folded a further BeppoSAX dataset with the period predicted at the time of that observation, finding that the phase is consistent. The value of the spin down rate, here measured for the first time, is approx 10^{-14} s/s and can not be explained in terms of propeller or torque from a fossil disk. When interpreted in terms of dipolar losses, it gives a magnetic field of B approx 10^{13} G, making also implausible that the source is accreting from the underdense surroundings. We discuss the implications of this measure for the different mechanisms that have been suggested to explain the X-ray emission. We conclude that the observed properties are more compatible with a scenario in which the source is approx 10^6 yrs old, and its magnetic field has not changed substantially over the lifetime.
208 - M.M. Hohle , F. Haberl , J. Vink 2009
In the past, the isolated, radio-quiet neutron star RX J0720.4-3125 showed variations in the spectral parameters (apparent radius, temperature of the emitting area and equivalent width of the absorption feature) seen in the X-ray spectra, not only du ring the spin period of 8.39s, but also over time scales of years. New X-ray observations of RX J0720.4-3125 with XMM Newton extend the coverage to about 7.5 years with the latest pointing performed in November 2007. Out of a total of fourteen available EPIC-pn datasets, eleven have been obtained with an identical instrumental setup (full frame read-out mode with thin filter), and are best suited for a comparative investigations of the spectral and timing properties of this enigmatic X-ray pulsar. We analysed the new XMM Newton observations together with archival data in order to follow the spectral and temporal evolution of RX J0720.4-3125 All XMM-Newton data were reduced with the standard XMM-SAS software package. A systematic and consistent data reduction of all these observations was emphasised in order to reduce systematic errors as far as possible. We investigate the phase residuals derived from data from different energy bands using different timing solutions for the spin period evolution and confirm the phase lag between hard and soft photons. The phase shift in the X-ray pulses between hard and soft photons varies with time and changes sign around MJD=52800 days, regardless of the chosen timing solution. The phase residuals[abridge]
RX J0720.4-3125 is an isolated neutron star that, uniquely in its class, has shown changes in its thermal X-ray spectrum. We use new spectra taken with Chandras Low Energy Transmission Grating Spectrometer, as well as archival observations, to try to understand the timescale and nature of these changes. We construct lightcurves, which show both small, slow variations on a timescale of years, and a larger event that occurred more quickly, within half a year. From timing, we find evidence for a `glitch coincident with this larger event, with a fractional increase in spin frequency of 5x10^{-8}. We compare the `before and `after spectra with those from RX J1308.6+2127, an isolated neutron star with similar temperature and magnetic field strength, but with a much stronger absorption feature in its spectrum. We find that the `after spectrum can be represented remarkably well by the superposition of the `before spectrum, scaled by two thirds, and the spectrum of RX J1308.6+2127, thus suggesting that the event affected approximately one third of the surface. We speculate the event reflects a change in surface composition caused by, e.g., an accretion episode.
118 - Alice Borghese 2015
We present the discovery of a strongly phase-variable absorption feature in the X-ray spectrum of the nearby, thermally-emitting, isolated neutron star RX J0720.4-3125. The absorption line was detected performing detailed phase-resolved spectroscopy in 20 XMM-Newton observations, covering the period May 2000 - September 2012. The feature has an energy of ~750eV, an equivalent width of ~30eV, and it is significantly detected for only ~20% of the pulsar rotation. The absorption feature appears to be stable over the timespan covered by the observations. Given its strong dependence on the pulsar rotational phase and its narrow width, a plausible interpretation is in terms of resonant proton cyclotron absorption/scattering in a confined magnetic structure very close to the neutron star surface. The inferred field in such a magnetic loop is B_loop ~ 2 x 10^{14} G, a factor of ~7 higher than the surface dipolar magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا