ترغب بنشر مسار تعليمي؟ اضغط هنا

We have performed $^{75}$As nuclear magnetic resonance (NMR) Knight shift measurements on single crystals of NaFe$_{0.975}$Co$_{0.025}$As to show that its superconductivity is a spin-paired, singlet state consistent with predictions of the weak-coupl ing BCS theory. We use a spectator nucleus, $^{23}$Na, uncoupled from the superconducting condensate, to determine the diamagnetic magnetization and to correct for its effect on the $^{75}$As NMR spectra. The resulting temperature dependence of the spin susceptibility follows the Yosida function as predicted by BCS for an isotropic, single-valued energy gap. Additionally, we have analyzed the $^{23}$Na spectra that become significantly broadened by vortices to obtain the superconducting penetration depth as a function of temperature with $lambda_{ab}(0) = 5,327 pm$ 78$,AA$.
We investigated the mechanism of the spin-reorientation transition (SRT) in the Ni/Fe/Ni/W(110) system using in situ low-energy electron microscopy, x-ray magnetic circular dichroism measurements, and first principles electronic structure calculation s. We discovered that the growth of Fe on a flat Ni film on a W (110) crystal resulted in the formation of nanosized particles, instead of a uniform monolayer of Fe as commonly assumed. This interfacial nanostructure leads to a change of the systems dimensionality from two dimensional- to three dimensional-like, which simultaneously weakens the dipolar interaction and enhances the spin-orbit coupling in the system and drives the observed SRT.
We report measurements of electronic, thermoelectric, and galvanomagnetic properties of individual single crystal antimony telluride (Sb2Te3) nanowires with diameters in the range of 20-100 nm. Temperature dependent resistivity and thermoelectric pow er (TEP) measurements indicate hole dominant diffusive thermoelectric generation, with an enhancement of the TEP for smaller diameter wires up to 110 uV/K at T = 300 K. We measure the magnetoresistance, in magnetic fields both parallel and perpendicular to the nanowire [110] axis, where strong anisotropic positive magnetoresistance behavior was observed.
115 - P. Yu , J. -S. Lee , S. Okamoto 2010
We report the formation of a novel ferromagnetic state in the antiferromagnet BiFeO3 at the interface with La0.7Sr0.3MnO3. Using x-ray magnetic circular dichroism at Mn and Fe L2,3-edges, we discovered that the development of this ferromagnetic spin structure is strongly associated with the onset of a significant exchange bias. Our results demonstrate that the magnetic state is directly related with an electronic orbital reconstruction at the interface, which is supported by the linearly polarized x-ray absorption measurement at oxygen K-edge.
We suggest a new CPX-derived scenario for the search of strangephilic MSSM Higgs bosons at the Tevatron and the LHC, in which all neutral and charged Higgs bosons decay predominantly into pairs of strange quarks and into a strange and a charm quark, respectively. The proposed scenario is realized within a particular region of the MSSM parameter space and requires large values of tan(beta), where threshold radiative corrections are significant to render the effective strange-quark Yukawa coupling dominant. Experimental searches for neutral Higgs bosons based on the identification of b-quark jets or tau leptons may miss a strangephilic Higgs boson and its existence could be inferred indirectly by searching for hadronically decaying charged Higgs bosons. Potential strategies and experimental challenges to search for strangephilic Higgs bosons at the Tevatron and the LHC are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا