ﻻ يوجد ملخص باللغة العربية
We investigated the mechanism of the spin-reorientation transition (SRT) in the Ni/Fe/Ni/W(110) system using in situ low-energy electron microscopy, x-ray magnetic circular dichroism measurements, and first principles electronic structure calculations. We discovered that the growth of Fe on a flat Ni film on a W (110) crystal resulted in the formation of nanosized particles, instead of a uniform monolayer of Fe as commonly assumed. This interfacial nanostructure leads to a change of the systems dimensionality from two dimensional- to three dimensional-like, which simultaneously weakens the dipolar interaction and enhances the spin-orbit coupling in the system and drives the observed SRT.
We present measurements of interfacial Gilbert damping due to the spin pumping effect in Ni$_{81}$Fe$_{19}$/W heterostructures. Measurements were compared for heterostructures in which the crystallographic phase of W, either $alpha$(bcc)-W or $beta$(
Anisotropic magnetoresistance (AMR) of Cr2Ge2Te6 (CGT), a layered ferromagnetic insulator, is investigated under an applied hydrostatic pressure up to 2 GPa. The easy axis direction of the magnetization is inferred from the AMR saturation feature in
The quasiparticle band structures of 3d transition metals, ferromagnetic Fe, Ni and paramagnetic Cu, are calculated by the GW approximation. The width of occupied 3d valence band, which is overestimated in the LSDA, is in good agreement with experime
We calculate magnetic anisotropy energy of Fe and Ni by taking into account the effects of strong electronic correlations, spin-orbit coupling, and non-collinearity of intra-atomic magnetization. The LDA+U method is used and its equivalence to dynami
On the basis of the density functional calculations in combination with the supercell approach, we report on a complete study of the influences of atomic arrangement and Ni substitution for Al on the ground state structural and magnetic properties fo