ﻻ يوجد ملخص باللغة العربية
We report the formation of a novel ferromagnetic state in the antiferromagnet BiFeO3 at the interface with La0.7Sr0.3MnO3. Using x-ray magnetic circular dichroism at Mn and Fe L2,3-edges, we discovered that the development of this ferromagnetic spin structure is strongly associated with the onset of a significant exchange bias. Our results demonstrate that the magnetic state is directly related with an electronic orbital reconstruction at the interface, which is supported by the linearly polarized x-ray absorption measurement at oxygen K-edge.
Multiferroic BiFeO3 (BFO) / La0.7Sr0.3MnO3 heterostructured thin films were grown by pulsed laser deposition on polished spark plasma sintered LaAlO3 (LAO) polycrystalline substrates. Both polycrystalline LAO substrates and BFO films were locally cha
The experimental observation of quantum anomalous Hall effect (QAHE) in magnetic topological insulators has stimulated enormous interest in condensed-matter physics and materials science. For the purpose of realizing high-temperature QAHE, several ma
We report the observation of field-induced magnetization of BiFeO3 (BFO) in an ultrathin BFO/La0.7Sr0.3MnO3 (LSMO) superlattice using polarized neutron reflectivity (PNR). Our PNR results indicate parallel alignment of magnetization across BFO/LSMO i
Conventional two-dimensional electron gases are realized by engineering the interfaces between semiconducting compounds. In 2004, Ohtomo and Hwang discovered that an electron gas can be also realized at the interface between large gap insulators made
Interface engineering is an extremely useful tool for systematically investigating materials and the various ways materials interact with each other. We describe different interface engineering strategies designed to reveal the origin of the electric