ترغب بنشر مسار تعليمي؟ اضغط هنا

272 - J. Rifa , V. Zinoviev 2013
A new family of binary linear completely transitive (and, therefore, completely regular) codes is constructed. The covering radius of these codes is growing with the length of the code. In particular, for any integer r > 1, there exist two codes with d=3, covering radius r and length 2r(4r-1) and (2r+1)(4r+1), respectively. These new completely transitive codes induce, as coset graphs, a family of distance-transitive graphs of growing diameter.
203 - J. Rifa , L. Ronquillo 2010
Product perfect codes have been proven to enhance the performance of the F5 steganographic method, whereas perfect Z2Z4-linear codes have been recently introduced as an efficient way to embed data, conforming to the +/-1-steganography. In this paper, we present two steganographic methods. On the one hand, a generalization of product perfect codes is made. On the other hand, this generalization is applied to perfect Z2Z4-linear codes. Finally, the performance of the proposed methods is evaluated and compared with those of the aforementioned schemes.
Let C be an additive subgroup of $Z_{2k}^n$ for any $kgeq 1$. We define a Gray map $Phi:Z_{2k}^n longrightarrow Z_2^{kn}$ such that $Phi(codi)$ is a binary propelinear code and, hence, a Hamming-compatible group code. Moreover, $Phi$ is the unique Gr ay map such that $Phi(C)$ is Hamming-compatible group code. Using this Gray map we discuss about the nonexistence of 1-perfect binary mixed group code.
Completely regular codes with covering radius $rho=1$ must have minimum distance $dleq 3$. For $d=3$, such codes are perfect and their parameters are well known. In this paper, the cases $d=1$ and $d=2$ are studied and completely characterized when t he codes are linear. Moreover, it is proven that all these codes are completely transitive.
104 - J. Rifa , V. A. Zinoviev 2008
For any integer $rho geq 1$ and for any prime power q, the explicit construction of a infinite family of completely regular (and completely transitive) q-ary codes with d=3 and with covering radius $rho$ is given. The intersection array is also compu ted. Under the same conditions, the explicit construction of an infinite family of q-ary uniformly packed codes (in the wide sense) with covering radius $rho$, which are not completely regular, is also given. In both constructions the Kronecker product is the basic tool that has been used.
New quaternary Plotkin constructions are given and are used to obtain new families of quaternary codes. The parameters of the obtained codes, such as the length, the dimension and the minimum distance are studied. Using these constructions new famili es of quaternary Reed-Muller codes are built with the peculiarity that after using the Gray map the obtained Z4-linear codes have the same parameters and fundamental properties as the codes in the usual binary linear Reed-Muller family. To make more evident the duality relationships in the constructed families the concept of Kronecker inner product is introduced.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا