ﻻ يوجد ملخص باللغة العربية
New quaternary Plotkin constructions are given and are used to obtain new families of quaternary codes. The parameters of the obtained codes, such as the length, the dimension and the minimum distance are studied. Using these constructions new families of quaternary Reed-Muller codes are built with the peculiarity that after using the Gray map the obtained Z4-linear codes have the same parameters and fundamental properties as the codes in the usual binary linear Reed-Muller family. To make more evident the duality relationships in the constructed families the concept of Kronecker inner product is introduced.
The well known Plotkin construction is, in the current paper, generalized and used to yield new families of Z2Z4-additive codes, whose length, dimension as well as minimum distance are studied. These new constructions enable us to obtain families of
The famous Barnes-Wall lattices can be obtained by applying Construction D to a chain of Reed-Muller codes. By applying Construction ${{D}}^{{(cyc)}}$ to a chain of extended cyclic codes sandwiched between Reed-Muller codes, Hu and Nebe (J. London Ma
We introduce a new approach to proving that a sequence of deterministic linear codes achieves capacity on an erasure channel under maximum a posteriori decoding. Rather than relying on the precise structure of the codes our method exploits code symme
This paper presents a novel successive factor-graph permutation (SFP) scheme that significantly improves the error-correction performance of Reed-Muller (RM) codes under successive-cancellation list (SCL) decoding. In particular, we perform maximum-l
Reed-Muller (RM) codes are one of the oldest families of codes. Recently, a recursive projection aggregation (RPA) decoder has been proposed, which achieves a performance that is close to the maximum likelihood decoder for short-length RM codes. One