ﻻ يوجد ملخص باللغة العربية
Let C be an additive subgroup of $Z_{2k}^n$ for any $kgeq 1$. We define a Gray map $Phi:Z_{2k}^n longrightarrow Z_2^{kn}$ such that $Phi(codi)$ is a binary propelinear code and, hence, a Hamming-compatible group code. Moreover, $Phi$ is the unique Gray map such that $Phi(C)$ is Hamming-compatible group code. Using this Gray map we discuss about the nonexistence of 1-perfect binary mixed group code.
A framework for linear-programming (LP) decoding of nonbinary linear codes over rings is developed. This framework facilitates linear-programming based reception for coded modulation systems which use direct modulation mapping of coded symbols. It is
New quaternary Plotkin constructions are given and are used to obtain new families of quaternary codes. The parameters of the obtained codes, such as the length, the dimension and the minimum distance are studied. Using these constructions new famili
We prove that, for the binary erasure channel (BEC), the polar-coding paradigm gives rise to codes that not only approach the Shannon limit but do so under the best possible scaling of their block length as a~function of the gap to capacity. This res
Linear codes have been an interesting topic in both theory and practice for many years. In this paper, a class of $q$-ary linear codes with few weights are presented and their weight distributions are determined using Gauss periods. Some of the linea
The conventional theory of linear network coding (LNC) is only over acyclic networks. Convolutional network coding (CNC) applies to all networks. It is also a form of LNC, but the linearity is w.r.t. the ring of rational power series rather than the