ترغب بنشر مسار تعليمي؟ اضغط هنا

We have studied the young low-mass pre-main sequence (PMS) stellar population associated with the massive star-forming region DR 21 by using archival X-ray Chandra observations and by complementing them with existing optical and IR surveys. The Chand ra observations have revealed for the first time a new highly extincted population of PMS low-mass stars previously missed in observations at other wavelengths. The X-ray population exhibits three main stellar density peaks, coincident with the massive star-forming regions, being the DR 21 core the main peak. The cross-correlated X-ray/IR sample exhibits a radial Spokes-like stellar filamentary structure that extends from the DR 21 core towards the northeast. The near IR data reveal a centrally peaked structure for the extinction, which exhibits its maximum in the DR 21 core and gradually decreases with the distance to the N-S cloud axis and to the cluster center. We find evidence of a global mass segregation in the full low-mass stellar cluster, and of an stellar age segregation, with the youngest stars still embedded in the N-S cloud, and more evolved stars more spatially distributed. The results are consistent with the scenario where an elongated overall potential well created by the full low-mass stellar cluster funnels gas through filaments feeding stellar formation. Besides the full gravitational well, smaller-scale local potential wells created by dense stellar sub-clusters of low-mass stars are privileged in the competition for the gas of the common reservoir, allowing the formation of massive stars. We also discuss the possibility that a stellar collision in the very dense stellar cluster revealed by Chandra in the DR 21 core is the origin of the large-scale and highly-energetic outflow arising from this region.
To distinguish between the different theories proposed to explain massive star formation, it is crucial to establish the distribution, the extinction, and the density of low-mass stars in massive star-forming regions. We analyzed deep X-ray observati ons of the Orion massive star-forming region using the Chandra Orion Ultradeep Project (COUP) catalog. We found that pre-main sequence (PMS) low-mass stars cluster toward the three massive star-forming regions: the Trapezium Cluster (TC), the Orion Hot Core (OHC), and OMC1-S. We derived low-mass stellar densities of 10^{5} stars pc^{-3} in the TC and OMC1-S, and of 10^{6} stars pc^{-3} in the OHC. The close association between the low-mass star clusters with massive star cradles supports the role of these clusters in the formation of massive stars. The X-ray observations show for the first time in the TC that low-mass stars with intermediate extinction are clustered toward the position of the most massive star, which is surrounded by a ring of non-extincted low-mass stars. Our analysis suggests that at least two basic ingredients are needed in massive star formation: the presence of dense gas and a cluster of low-mass stars. The scenario that better explains our findings assumes high fragmentation in the parental core, accretion at subcore scales that forms a low-mass stellar cluster, and subsequent competitive accretion.
Outflows arising from very young stars affect their surroundings and influence the star formation in the parental core. Multiple molecular outflows and Herbig-Haro (HH) objects have been observed in Orion, many of them originating from the embedded m assive star-forming region known as OMC1-S. The detection of the outflow driving sources is commonly difficult, because they are still hidden behind large extinction, preventing their direct observation at optical and even near and mid-IR wavelengths. With the aim of improving the identification of the driving sources of the multiple outflows detected in OMC1-S, we used the catalog provided by deep X-ray observations, which have unveiled the very embedded population of pre-main sequence stars. We compared the position of stars observed by the Chandra Orion Ultra Deep project (COUP) in OMC1-S with the morphology of the molecular outflows and the directions of measured proper motions of HH optical objects. We find that 6 out of 7 molecular outflows reported in OMC1-S (detection rate of 86 %) have an extincted X-ray COUP star located at the expected position of the driving source. In several cases, X-rays detected the possible driving sources for the first time. This clustered embedded population revealed by Chandra is very young, with an estimated average age of few 10^{5} yr. It is also likely responsible for the multiple HH objects, which are the optical correspondence of flows arising from the cloud. We show that the molecular outflows driven by the members of the OMC1-S cluster can account for the observed turbulence at core-scales and regulate the star formation efficiency. We discuss the effects of outflow feedback in the formation of massive stars, concluding that the injected turbulence in OMC1-S is compatible with a competitive accretion scenario.
To distinguish between the different theories proposed to explain massive star formation, it is crucial to establish the distribution, the extinction, and the density of low-mass stars in massive star-forming regions. We analyze deep X-ray observatio ns of the Orion massive star-forming region using the Chandra Orion Ultradeep Project (COUP) catalog. We studied the stellar distribution as a function of extinction, with cells of 0.03 pc x 0.03 pc, the typical size of protostellar cores. We derived stellar density maps and calculated cluster stellar densities. We found that low-mass stars cluster toward the three massive star-forming regions: the Trapezium Cluster (TC), the Orion Hot Core (OHC), and OMC1-S. We derived low-mass stellar densities of 10^{5} stars pc^{-3} in the TC and OMC1-S, and of 10^{6} stars pc^{-3} in the OHC. The close association between the low-mass star clusters with massive star cradles supports the role of these clusters in the formation of massive stars. The X-ray observations show for the first time in the TC that low-mass stars with intermediate extinction are clustered toward the position of the most massive star, which is surrounded by a ring of non-extincted low-mass stars. This envelope-core structure is also supported by infrared and optical observations. Our analysis suggests that at least two basic ingredients are needed in massive star formation: the presence of dense gas and a cluster of low-mass stars. The scenario that better explains our findings assumes high fragmentation in the parental core, accretion at subcore scales that forms a low-mass stellar cluster, and subsequent competitive accretion. Finally, although coalescence does not seem a common mechanism for building up massive stars, we show that a single stellar merger may have occurred in the evolution of the OHC cluster, favored by the presence of disks, binaries, and gas accretion.
The interstellar region within the few central parsecs around the super-massive black hole, Sgr A* at the very Galactic center is composed by a number of overlapping molecular structures which are subject to one of the most hostile physical environme nts in the Galaxy. We present high resolution (4x3~0.16x0.11 pc) interferometric observations of CN, 13CN, H2CO, SiO, c-C3H2 and HC3N emission at 1.3 mm towards the central ~4 pc of the Galactic center region. Strong differences are observed in the distribution of the different molecules. The UV resistant species CN, the only species tracing all previously identified circumnuclear disk (CND) structures, is mostly concentrated in optically thick clumps in the rotating filaments around Sgr A*. H2CO emission traces a shell-like structure that we interpret as the expansion of Sgr A East against the 50 km/s and 20 km/s giant molecular clouds (GMCs). We derive isotopic ratios 12C/13C~15-45 across most of the CND region. The densest molecular material, traced by SiO and HC3N, is located in the southern CND. The observed c-C3H2/HC3N ratio observed in the region is more than an order of magnitude lower than in Galactic PDRs. Toward the central region only CN was detected in absorption. Apart from the known narrow line-of-sight absorptions, a 90 km/s wide optically thick spectral feature is observed. We find evidences of an even wider (>100 km/s) absorption feature. Around 70-75% of the gas mass, concentrated in just the 27% densest molecular clumps, is associated with rotating structures and show evidences of association with each of the arcs of ionized gas in the mini-spiral structure. Chemical differentiation has been proven to be a powerful tool to disentangle the many overlapping molecular components in this crowded and heavily obscured region.
The detection of narrow SiO thermal emission toward young outflows has been proposed to be a signature of the magnetic precursor of C-shocks. Recent modeling of the SiO emission across C-shocks predicts variations in the SiO line intensity and line s hape at the precursor and intermediate-velocity regimes in only few years. We present high-angular resolution (3.8x3.3) images of the thermal SiO J=2-1 emission toward the L1448-mm outflow in two epochs (November 2004-February 2005, March-April 2009). Several SiO condensations have appeared at intermediate velocities (20-50 km/s) toward the red-shifted lobe of the outflow since 2005. Toward one of the condensations (clump D), systematic differences of the dirty beams between 2005 and 2009 could be responsible for the SiO variability. At higher velocities (50-80 km/s), SiO could also have experienced changes in its intensity. We propose that the SiO variability toward L1448-mm is due to a real SiO enhancement by young C-shocks at the internal working surface between the jet and the ambient gas. For the precursor regime (5.2-9.2 km/s), several narrow and faint SiO components are detected. Narrow SiO tends to be compact, transient and shows elongated (bow-shock) morphologies perpendicular to the jet. We speculate that these features are associated with the precursor of C-shocks appearing at the interface of the new SiO components seen at intermediate velocities.
We present the first aperture synthesis unbiased spectral line survey toward an extragalactic object. The survey covered the 40 GHz frequency range between 202 and 242 GHz of the 1.3 mm atmospheric window. We find that 80% of the observed band shows molecular emission, with 73 features identified from 15 molecular species and 6 isotopologues. The 13C isotopic substitutions of HC3N and transitions from H2(18)O, 29SiO, and CH2CO are detected for the first time outside the Galaxy. Within the broad observed band, we estimate that 28% of the total measured flux is due to the molecular line contribution, with CO only contributing 9% to the overall flux. We present maps of the CO emission at a resolution of 2.9x1.9 which, though not enough to resolve the two nuclei, recover all the single-dish flux. The 40 GHz spectral scan has been modelled assuming LTE conditions and abundances are derived for all identified species. The chemical composition of Arp 220 shows no clear evidence of an AGN impact on the molecular emission but seems indicative of a purely starburst-heated ISM. The overabundance of H2S and the low isotopic ratios observed suggest a chemically enriched environment by consecutive bursts of star formation, with an ongoing burst at an early evolutionary stage. The large abundance of water (~10^-5), derived from the isotopologue H2(18)O, as well as the vibrationally excited emission from HC3N and CH3CN are claimed to be evidence of massive star forming regions within Arp 220. Moreover, the observations put strong constraints on the compactness of the starburst event in Arp 220. We estimate that such emission would require ~2-8x10^6 hot cores, similar to those found in the Sgr B2 region in the Galactic center, concentrated within the central 700 pc of Arp 220.
We present VLA and PdBI subarcsecond images (0.15-0.6) of the radiocontinuum emission at 7 mm and of the SO2 J=19_{2,18}-18_{3,15} and J=27_{8,20}-28_{7,21} lines toward the Cepheus A HW2 region. The SO2 images reveal the presence of a hot core inter nally heated by an intermediate mass protostar, and a circumstellar rotating disk around the HW2 radio jet with size 600AUx100AU and mass of 1M_sun. Keplerian rotation for the disk velocity gradient of 5 kms-1 requires a 9 M_sun central star, which cannot explain the total luminosity observed in the region. This may indicate that the disk does not rotate with a Keplerian law due to the extreme youth of this object. Our high sensitivity radiocontinuum image at 7 mm shows in addition to the ionized jet, an extended emission to the west (and marginally to the south) of the HW2 jet, filling the south-west cavity of the HW2 disk. From the morphology and location of this free-free continuum emission at centimeter and millimeter wavelengths (spectral index of 0.4-1.5), we propose that the disk is photoevaporating due to the UV radiation from the central star. All this indicates that the Cepheus A HW2 region harbors a cluster of massive stars. Disk accretion seems to be the most plausible way to form massive stars in moderate density/luminosity clusters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا