ترغب بنشر مسار تعليمي؟ اضغط هنا

A Photoevaporating Rotating Disk in the Cepheus A HW2 Star Cluster

47   0   0.0 ( 0 )
 نشر من قبل Izaskun Jimenez-Serra
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I. Jimenez-Serra




اسأل ChatGPT حول البحث

We present VLA and PdBI subarcsecond images (0.15-0.6) of the radiocontinuum emission at 7 mm and of the SO2 J=19_{2,18}-18_{3,15} and J=27_{8,20}-28_{7,21} lines toward the Cepheus A HW2 region. The SO2 images reveal the presence of a hot core internally heated by an intermediate mass protostar, and a circumstellar rotating disk around the HW2 radio jet with size 600AUx100AU and mass of 1M_sun. Keplerian rotation for the disk velocity gradient of 5 kms-1 requires a 9 M_sun central star, which cannot explain the total luminosity observed in the region. This may indicate that the disk does not rotate with a Keplerian law due to the extreme youth of this object. Our high sensitivity radiocontinuum image at 7 mm shows in addition to the ionized jet, an extended emission to the west (and marginally to the south) of the HW2 jet, filling the south-west cavity of the HW2 disk. From the morphology and location of this free-free continuum emission at centimeter and millimeter wavelengths (spectral index of 0.4-1.5), we propose that the disk is photoevaporating due to the UV radiation from the central star. All this indicates that the Cepheus A HW2 region harbors a cluster of massive stars. Disk accretion seems to be the most plausible way to form massive stars in moderate density/luminosity clusters.

قيم البحث

اقرأ أيضاً

We present the discovery of the first molecular hot core associated with an intermediate mass protostar in the CepA HW2 region. The hot condensation was detected from single dish and interferometric observations of several high excitation rotational lines (from 100 to 880K above the ground state) of SO2 in the ground vibrational state and of HC3N in the vibrationally excited states v7=1 and v7=2. The kinetic temperature derived from both molecules is 160K. The high-angular resolution observations (1.25 x 0.99) of the SO2 J=28(7,21)-29(6,24) line (488K above the ground state) show that the hot gas is concentrated in a compact condensation with a size of 0.6(430AU), located 0.4 (300AU) east from the radio-jet HW2. The total SO2 column density in the hot condensation is 10E18cm-2, with a H2 column density ranging from 10E23 to 6 x 10E24cm-2. The H2 density and the SO2 fractional abundance must be larger than 10E7cm-3 and 2 x 10E-7 respectively. The most likely alternatives for the nature of the hot and very dense condensation are discussed. From the large column densities of hot gas, the detection of the HC3N vibrationally excited lines and the large SO2 abundance, we favor the interpretation of a hot core heated by an intermediate mass protostar of 10E3 Lo. This indicates that the CepA HW2 region contains a cluster of very young stars.
101 - K. Sugiyama , K. Fujisawa , A. Doi 2013
We have measured the internal proper motions of the 6.7 GHz methanol masers associated with Cepheus A (Cep A) HW2 using Very Long Baseline Interferometery (VLBI) observations. We conducted three epochs of VLBI monitoring observations of the 6.7 GHz m ethanol masers in Cep A-HW2 with the Japanese VLBI Network (JVN) over the period between 2006-2008. In 2006, we were able to use phase-referencing to measure the absolute coordinates of the maser emission with an accuracy of a few milliarcseconds. We compared the maser distribution with other molecular line observations that trace the rotating disk. We measured the internal proper motions for 29 methanol maser spots, of which 19 were identified at all three epochs and the remaining ten at only two epochs. The magnitude of proper motions ranged from 0.2 to 7.4 km/s, with an average of 3.1 km/s. Although there are large uncertainties in the observed internal proper motions of the methanol maser spots in Cep A, they are well fitted by a disk that includes both rotation and infall velocity components. The derived rotation and infall velocities at the disk radius of 680 au are 0.5 +- 0.7 and 1.8 +- 0.7 km/s, respectively. Assuming that the modeled disk motion accurately represents the accretion disk around the Cep A-HW2 high-mass YSO, we estimated the mass infall rate to be 3 x 10^{-4} n_8 Msun/yr (n_8 is the gas volume density in units of 10^{8} cm^{-3}). The combination of the estimated mass infall rate and the magnitude of the fitted infall velocity suggests that Cep A-HW2 is at an evolutionary phase of active gas accretion from the disk onto the central high-mass YSO. The infall momentum rate is estimated to be 5 x 10^{-4} n_8 Msun/yr km/s, which is larger than the estimated stellar radiation pressure of the HW2 object, supporting the hypothesis that this object is in an active gas accretion phase.
Recent years have seen growing interest in the streaming instability as a candidate mechanism to produce planetesimals. However, these investigations have been limited to small-scale simulations. We now present the results of a global protoplanetary disk evolution model that incorporates planetesimal formation by the streaming instability, along with viscous accretion, photoevaporation by EUV, FUV, and X-ray photons, dust evolution, the water ice line, and stratified turbulence. Our simulations produce massive (60-130 $M_oplus$) planetesimal belts beyond 100 au and up to $sim 20 M_oplus$ of planetesimals in the middle regions (3-100 au). Our most comprehensive model forms 8 $M_oplus$ of planetesimals inside 3 au, where they can give rise to terrestrial planets. The planetesimal mass formed in the inner disk depends critically on the timing of the formation of an inner cavity in the disk by high-energy photons. Our results show that the combination of photoevaporation and the streaming instability are efficient at converting the solid component of protoplanetary disks into planetesimals. Our model, however, does not form enough early planetesimals in the inner and middle regions of the disk to give rise to giant planets and super-Earths with gaseous envelopes. Additional processes such as particle pileups and mass loss driven by MHD winds may be needed to drive the formation of early planetesimal generations in the planet forming regions of protoplanetary disks.
We present the first detection of the H40a, H34a and H31a radio recombination lines (RRLs) at millimeter wavelengths toward the high-velocity, ionized jet in the Cepheus A HW2 star forming region. From our single-dish and interferometric observations , we find that the measured RRLs show extremely broad asymmetric line profiles with zero-intensity linewidths of ~1100 kms-1. From the linewidths, we estimate a terminal velocity for the ionized gas in the jet of >500 kms-1, consistent with that obtained from the proper motions of the HW2 radio jet. The total integrated line-to-continuum flux ratios of the H40a, H34a and H31a lines are 43, 229 and 280 kms-1, clearly deviating from LTE predictions. These ratios are very similar to those observed for the RRL maser toward MWC349A, suggesting that the intensities of the RRLs toward HW2 are affected by maser emission. Our radiative transfer modeling of the RRLs shows that their asymmetric profiles could be explained by maser emission arising from a bi-conical radio jet with a semi-aperture angle of 18 deg, electron density distribution varying as r^(-2.11) and turbulent and expanding wind velocities of 60 and 500 kms-1.
77 - Ya.N Istomin 2012
A conducting disk significantly changes the generation of the electromagnetic radiation excited by the rotation of the magnetic field frozen to a star. Due to the reflection of waves from a disk there appear waves propagating toward a star, not only outward a star as it takes place for the magneto-dipole radiation. Because that the angular momentum can be transformed from a disk to a star when the inner edge of a disk approaches the light surface of a rotating star. This is purely electromagnetic effect. At some distance of a disk from a star, $r_d=r^*simeq c/omega_s$, the stellar angular momentum losses due to the electromagnetic radiation become zero. It results the stable stellar rotation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا