ترغب بنشر مسار تعليمي؟ اضغط هنا

Our knowledge of the ground state of underdoped hole-doped cuprates has evolved considerably over the last few years. There is now compelling evidence that inside the pseudogap phase, charge order breaks translational symmetry leading to a reconstruc ted Fermi surface made of small pockets. Quantum oscillations, [Doiron-Leyraud N, et al. (2007) Nature 447:564-568], optical conductivity [Mirzaei SI, et al. (2013) Proc Natl Acad Sci USA 110:5774-5778] and the validity of Wiedemann-Franz law [Grissonnache G, et al. (2016) Phys. Rev. B 93:064513] point to a Fermi liquid regime at low temperature in the underdoped regime. However, the observation of a quadratic temperature dependence in the electrical resistivity at low temperatures, the hallmark of a Fermi liquid regime, is still missing. Here, we report magnetoresistance measurements in the magnetic-field-induced normal state of underdoped YBa_2Cu_4O_8 which are consistent with a T^2 resistivity extending down to 1.5 K. The magnitude of the T^2 coefficient, however, is much smaller than expected for a single pocket of the mass and size observed in quantum oscillations, implying that the reconstructed Fermi surface must consist of at least one additional pocket.
BiTeI is a giant Rashba spin splitting system, in which a non-centro symmetric topological phase has recently been suggested to appear under high pressure. We investigated the optical properties of this compound, reflectivity and transmission, under pressures up to $15$ GPa. The gap feature in the optical conductivity vanishes above $p sim 9$ GPa and does not reappear up to at least $15$ GPa. The plasma edge, associated with intrinsically doped charge carriers, is smeared out through a phase transition at $9$ GPa. Using high pressure Raman spectroscopy, we follow the vibrational modes of BiTeI, providing additional clear evidence that the transition at 9 GPa involves a change of crystal structure. This change of crystal structure possibly inhibits the high-pressure topological phase from occurring.
Far-infrared diagonal and Hall conductivities of multilayer epitaxial graphene on the C-face of SiC were measured using magneto-optical absorption and Faraday rotation in magnetic fields up to 7 T and temperatures between 5 and 300 K. Multiple compon ents are identified in the spectra, which include: (i) a quasi-classical cyclotron resonance (CR), originating from the highly doped graphene layer closest to SiC, (ii) transitions between low-index Landau levels (LLs), which stem from weakly doped layers and (iii) a broad optical absorption background. Electron and hole type LL transitions are optically distinguished and shown to coexist. An electron-hole asymmetry of the Fermi velocity of about 2% was found within one graphene layer, while the Fermi velocity varies by about 10% across the layers. The optical intensity of the LL transitions is several times smaller than what is theoretically expected for isolated graphene monolayers without electron-electron and electron-phonon interactions.
We performed far-infrared optical spectroscopy measurements on the heavy fermion compound URu 2 Si 2 as a function of temperature. The lights electric-field was applied along the a-axis or the c-axis of the tetragonal structure. We show that in addit ion to a pronounced anisotropy, the optical conductivity exhibits for both axis a partial suppression of spectral weight around 12 meV and below 30 K. We attribute these observations to a change in the bandstructure below 30 K. However, since these changes have no noticeable impact on the entropy nor on the DC transport properties, we suggest that this is a crossover phenomenon rather than a thermodynamic phase transition.
We present a study of transport properties of the heavy fermion URu$_2$Si$_2$ in pulsed magnetic field. The large Nernst response of the hidden order state is found to be suppressed when the magnetic field exceeds 35 T. The combination of resistivity , Hall and Nernst data outlines the reconstruction of the Fermi surface in the temperature-field phase diagram. The zero-field ground state is a compensated heavy-electron semi-metal, which is destroyed by magnetic field through a cascade of field-induced transitions. Above 40 T, URu$_2$Si$_2$ appears to be a polarized heavy fermions metal with a large density of carriers whose effective mass rapidly decreases with increasing magnetic polarization.
Only few selected examples among the great diversity of anomalous rare earth skutterudite are reviewed. Focus is first given on PrFe4P12 in comparison with URu2Si2. For PrFe4P12, great progress has been made on determining the nature of the order par ameter (OP). A non magnetic order parameter with a multipolar component emerges here while for URu2Si2 the nature of the so-called hidden order remains mysterious. The two systems have several similarities in their temperature--pressure (T, P) and magnetic field--temperature (H, T) phase diagrams, in their spin dynamics, in their nesting character and in their high sensitivity to impurities. Advances on one side must stimulate new views on the other. Besides general considerations on the choice of the OP, a simple basic problem is the treatment of the Kondo coupling in a system with low charge carrier number for the cases of uncompensated and compensated semi-metal. An interesting problem is also the possible decoupling between exciton modes and itinerant carriers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا