ترغب بنشر مسار تعليمي؟ اضغط هنا

74 - J. Hu , X. Liu , C.L. Yue 2015
The extraordinary properties of two dimensional (2D) materials, such as the extremely high carrier mobility in graphene and the large direct band gaps in transition metal dichalcogenides MX2 (M = Mo or W, X = S, Se) monolayers, highlight the crucial role quantum confinement can have in producing a wide spectrum of technologically important electronic properties. Currently one of the highest priorities in the field is to search for new 2D crystalline systems with structural and electronic properties that can be exploited for device development. In this letter, we report on the unusual quantum transport properties of the 2D ternary transition metal chalcogenide - Nb3SiTe6. We show that the micaceous nature of Nb3SiTe6 allows it to be thinned down to one-unit-cell thick 2D crystals using microexfoliation technique. When the thickness of Nb3SiTe6 crystal is reduced below a few unit-cells thickness, we observed an unexpected, enhanced weak-antilocalization signature in magnetotransport. This finding provides solid evidence for the long-predicted suppression of electron-phonon interaction caused by the crossover of phonon spectrum from 3D to 2D.
351 - M. J. Hu , Y. S. Zhang 2015
A universal deterministic noiseless quantum amplifier has been shown to be impossible. However, probabilistic noiseless amplification of a certain set of states is physically permissible. Regarding quantum state amplification as quantum state transfo rmation, we show that deterministic noiseless amplification of coherent states chosen from a proper set is possible. The relation between input coherent states and gain of amplification for deterministic noiseless amplification is thus derived. Besides, the potential applications of amplification of coherent states in quantum key distribution (QKD), noisy channel and non-ideal detection are also discussed.
200 - J. Hu , J.J. He , A. Parikh 2014
The $^{14}$O($alpha$,$p$)$^{17}$F reaction is one of the key reactions involved in the breakout from the hot-CNO cycle to the rp-process in type I x-ray bursts (XRBs). The resonant properties in the compound nucleus $^{18}$Ne have been investigated t hrough resonant elastic scattering of $^{17}$F+$p$. The radioactive $^{17}$F beam was separated by the CNS Radioactive Ion Beam separator (CRIB) and bombarded a thick H$_2$ gas target at 3.6 MeV/nucleon. The recoiling light particles were measured by three ${Delta}$E-E silicon telescopes at laboratory angles of $theta$$_{lab}$$approx$3$^circ$, 10$^circ$ and 18$^circ$, respectively. Five resonances at $E_{x}$=6.15, 6.28, 6.35, 6.85, and 7.05 MeV were observed in the excitation functions, and their spin-parities have been determined based on an $R$-matrix analysis. In particular, $J^{pi}$=1$^-$ was firmly assigned to the 6.15-MeV state which dominates the thermonuclear $^{14}$O($alpha$,$p$)$^{17}$F rate below 2 GK. As well, a possible new excited state in $^{18}$Ne was observed at $E_{x}$=6.85$pm$0.11 MeV with tentative $J$=0 assignment. This state could be the analog state of the 6.880 MeV (0$^{-}$) level in the mirror nucleus $^{18}$O, or a bandhead state (0$^+$) of the six-particle four-hole (6$p$-4$h$) band. A new thermonuclear $^{14}$O($alpha$,$p$)$^{17}$F rate has been determined, and the astrophysical impact of multiple recent rates has been examined using an XRB model. Contrary to previous expectations, we find only modest impact on predicted nuclear energy generation rates from using reaction rates differing by up to several orders of magnitude.
248 - J. Hu , J.J. He , A. Parikh 2014
The $^{14}$O($alpha$,$p$)$^{17}$F reaction is one of the key reactions involved in the breakout from the hot-CNO cycle to the rp-process in type I x-ray bursts. The resonant properties in the compound nucleus $^{18}$Ne have been investigated through resonant elastic scattering of $^{17}$F+$p$. The radioactive $^{17}$F beam was separated by the CNS Radioactive Ion Beam separator (CRIB) and bombarded a thick H$_2$ gas target at 3.6 MeV/nucleon. The recoiling light particles were measured by using three ${Delta}$E-E silicon telescopes at laboratory angles of $theta$$_{lab}$$approx$3$^circ$, 10$^circ$ and 18$^circ$, respectively. Five resonances at $E_{x}$=6.15, 6.28, 6.35, 6.85, and 7.05 MeV were observed in the excitation functions. Based on an $R$-matrix analysis, $J^{pi}$=1$^-$ was firmly assigned to the 6.15-MeV state. This state dominates the thermonuclear $^{14}$O($alpha$,$p$)$^{17}$F rate below 1 GK. We have also confirmed the existence and spin-parities of three states between 6.1 and 6.4 MeV. As well, a possible new excited state in $^{18}$Ne was observed at $E_{x}$=6.85$pm$0.11 MeV and tentatively assigned as $J$=0. This state could be the analog state of the 6.880 MeV (0$^{-}$) level in the mirror nucleus $^{18}$O, or a bandhead state (0$^+$) of the six-particle four-hole (6$p$-4$h$) band. A new thermonuclear rate of the $^{14}$O($alpha$,$p$)$^{17}$F reaction has been determined, and its astrophysical impact has been examined within the framework of one-zone x-ray burst postprocessing calculations.
127 - M. Le Berre , Yan-Jun Liu , J. Hu 2013
In the absence of environmental cues, a migrating cell performs an isotropic random motion. Recently, the breaking of this isotropy has been observed when cells move in the presence of asymmetric adhesive patterns. However, up to now the mechanisms a t work to direct cell migration in such environments remain unknown. Here, we show that a non-adhesive surface with asymmetric micro-geometry consisting of dense arrays of tilted micro-pillars can direct cell motion. Our analysis reveals that most features of cell trajectories, including the bias, can be reproduced by a simple model of active Brownian particle in a ratchet potential, which we suggest originates from a generic elastic interaction of the cell body with the environment. The observed guiding effect, independent of adhesion, is therefore robust and could be used to direct cell migration both in vitro and in vivo.
42 - J. Hu , J.J. He , S.W. Xu 2013
Proton resonant states in $^{18}$Ne have been investigated by the resonant elastic scattering of $^{17}$F+$p$. The $^{17}$F beam was separated by the CNS radioactive ion beam separator (CRIB), and bombarded a thick H$_2$ gas target at 3.6 MeV/nucleon . The recoiled light particles were measured by using three sets of ${Delta}$E-E Si telescope at scattering angles of $theta$$_{lab}$$approx 3^circ$, 10$^circ$ and 18$^circ$, respectively. Four resonances, {it i.e.}, at $E_{x}$=6.15, 6.30, 6.85, and 7.05 MeV, were observed clearly. By $R$-matrix analysis of the excitation functions, $J^{pi}$=1$^-$ was firmly assigned to the 6.15 MeV state which is a key state in calculating the reaction rate of $^{14}$O($alpha$,$p$)$^{17}$F reaction. This reaction was thought to be one of the most probable key reactions for the breakout from the hot-CNO cycle to the $rp$-process in type I x-ray bursts In addition, a new excited state observed at $E_{x}$=6.85 MeV was tentatively assigned as 0$^{-}$, which could be the analog state of 6.880 MeV, 0$^{-}$ in mirror $^{18}$O.
73 - J. Hu , T.J. Liu , B. Qian 2011
We have investigated the specific heat of optimally-doped iron chalcogenide superconductor Fe(Te0.57Se0.43) with a high-quality single crystal sample. The electronic specific heat Ce of this sample has been successfully separated from the phonon cont ribution using the specific heat of a non-superconducting sample (Fe0.90Cu0.10)(Te0.57Se0.43) as a reference. The normal state Sommerfeld coefficient gamma_n of the superconducting sample is found to be ~ 26.6 mJ/mol K^2, indicating intermediate electronic correlation. The temperature dependence of Ce in the superconducting state can be best fitted using a double-gap model with 2Delta_s(0)/kBTc = 3.92 and 2Delta_l(0)/kBTc = 5.84. The large gap magnitudes derived from fitting, as well as the large specific heat jump of Delta_Ce(Tc)/gamma_n*Tc ~ 2.11, indicate strong-coupling superconductivity. Furthermore, the magnetic field dependence of specific heat shows strong evidence for multiband superconductivity.
63 - J. Hu , J.J. He , S.W. Xu 2010
Properties of proton resonances in $^{18}$Ne have been investigated efficiently by utilizing a technique of proton resonant elastic scattering with a $^{17}$F radioactive ion (RI) beam and a thick proton target. A 4.22~MeV/nucleon $^{17}$F RI beam wa s produced via a projectile-fragmentation reaction, and subsequently separated by a Radioactive Ion Beam Line in Lanzhou ({tt RIBLL}). Energy spectra of the recoiled protons were measured by two sets of $Delta$E-E silicon telescope at center-of-mass scattering angles of $theta_{c.m.}$$approx$175${^circ}$$pm$5${^circ}$, $theta_{c.m.}$$approx$152${^circ}$$pm$8${^circ}$, respectively. Several proton resonances in $^{18}$Ne were observed, and their resonant parameters have been determined by an $R$-matrix analysis of the differential cross sections in combination with the previous results. The resonant parameters are related to the reaction-rate calculation of the stellar $^{14}$O($alpha$,$p$)$^{17}$F reaction, which was thought to be the breakout reaction from the hot CNO cycles into the $rp$-process in x-ray bursters. Here, $J^pi$=(3$^-$, 2$^-$) are tentatively assigned to the 6.15-MeV state which was thought the key 1$^-$ state previously. In addition, a doublet structure at 7.05 MeV are tentatively identified, and its contribution to the resonant reaction rate of $^{14}$O($alpha$,$p$)$^{17}$F could be enhanced by at least factors of about 4$sim$6 in comparison with the previous estimation involving only a singlet. The present calculated resonant rates are much larger than those previous values, and it may imply that this breakout reaction could play a crucial role under x-ray bursters conditions.
154 - T.J. Liu , J. Hu , B. Qian 2010
The iron chalcogenide Fe1+y(Te1-xSex) is structurally the simplest of the Fe-based superconductors. Although the Fermi surface is similar to iron pnictides, the parent compound Fe1+yTe exhibits antiferromagnetic order with in-plane magnetic wave-vect or (pi, 0). This contrasts the pnictide parent compounds where the magnetic order has an in-plane magnetic wave-vector (pi, pi) that connects hole and electron parts of the Fermi surface. Despite these differences, both the pnictide and chalcogenide Fe-superconductors exhibit superconducting spin resonances around (pi, pi), suggesting a common symmetry for their superconducting order parameter. A central question in this burgeoning field is therefore how (pi, pi) superconductivity can emerge from a (pi, 0) magnetic instability. Here, we report that the magnetic soft mode evolving from the (pi, 0)-type magnetic long-range order is associated with weak charge carrier localization. Bulk superconductivity occurs only as the magnetic mode at (pi, pi) becomes dominant upon doping. Our results suggest a common magnetic origin for superconductivity in iron chalcogenide and pnictide superconductors.
67 - H.Y. He , J. Hu , B.C. Pan 2009
Based on density functional theory calculations, we systematically investigate the behaviors of a H atom in Ag-doped ZnO, involving the preference sites, diffusion behaviors, the electronic structures and vibrational properties. We find that a H atom can migrate to the doped Ag to form a Ag-H complex by overcoming energy barriers of 0.3 - 1.0 eV. The lowest-energy site for H location is the bond center of a Ag-O in the basal plane. Moreover, H can migrate between this site and its equivalent sites with energy cost of less than 0.5 eV. In contrast, dissociation of such a Ag-H complex needs energy of about 1.1 - 1.3 eV. This implies that the Ag-H complexes can commonly exist in the Ag-doped ZnO, which have a negative effect on the desirable p-type carrier concentrations of Ag-doped ZnO. In addition, based on the frozen phonon calculation, the vibrational properties of ZnO with a Ag-H complex are predicted. Some new vibrational modes associated with the Ag-H complex present in the vibrational spectrum of the system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا