ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of excited states in $^{18}$Ne via resonant elastic scattering of $^{17}$F+p and its astrophysical implication in the stellar reaction of $^{14}$O($alpha$,$p$)$^{17}$F

112   0   0.0 ( 0 )
 نشر من قبل Jianjun He Dr
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Properties of proton resonances in $^{18}$Ne have been investigated efficiently by utilizing a technique of proton resonant elastic scattering with a $^{17}$F radioactive ion (RI) beam and a thick proton target. A 4.22~MeV/nucleon $^{17}$F RI beam was produced via a projectile-fragmentation reaction, and subsequently separated by a Radioactive Ion Beam Line in Lanzhou ({tt RIBLL}). Energy spectra of the recoiled protons were measured by two sets of $Delta$E-E silicon telescope at center-of-mass scattering angles of $theta_{c.m.}$$approx$175${^circ}$$pm$5${^circ}$, $theta_{c.m.}$$approx$152${^circ}$$pm$8${^circ}$, respectively. Several proton resonances in $^{18}$Ne were observed, and their resonant parameters have been determined by an $R$-matrix analysis of the differential cross sections in combination with the previous results. The resonant parameters are related to the reaction-rate calculation of the stellar $^{14}$O($alpha$,$p$)$^{17}$F reaction, which was thought to be the breakout reaction from the hot CNO cycles into the $rp$-process in x-ray bursters. Here, $J^pi$=(3$^-$, 2$^-$) are tentatively assigned to the 6.15-MeV state which was thought the key 1$^-$ state previously. In addition, a doublet structure at 7.05 MeV are tentatively identified, and its contribution to the resonant reaction rate of $^{14}$O($alpha$,$p$)$^{17}$F could be enhanced by at least factors of about 4$sim$6 in comparison with the previous estimation involving only a singlet. The present calculated resonant rates are much larger than those previous values, and it may imply that this breakout reaction could play a crucial role under x-ray bursters conditions.



قيم البحث

اقرأ أيضاً

268 - J. Hu , J.J. He , A. Parikh 2014
The $^{14}$O($alpha$,$p$)$^{17}$F reaction is one of the key reactions involved in the breakout from the hot-CNO cycle to the rp-process in type I x-ray bursts (XRBs). The resonant properties in the compound nucleus $^{18}$Ne have been investigated t hrough resonant elastic scattering of $^{17}$F+$p$. The radioactive $^{17}$F beam was separated by the CNS Radioactive Ion Beam separator (CRIB) and bombarded a thick H$_2$ gas target at 3.6 MeV/nucleon. The recoiling light particles were measured by three ${Delta}$E-E silicon telescopes at laboratory angles of $theta$$_{lab}$$approx$3$^circ$, 10$^circ$ and 18$^circ$, respectively. Five resonances at $E_{x}$=6.15, 6.28, 6.35, 6.85, and 7.05 MeV were observed in the excitation functions, and their spin-parities have been determined based on an $R$-matrix analysis. In particular, $J^{pi}$=1$^-$ was firmly assigned to the 6.15-MeV state which dominates the thermonuclear $^{14}$O($alpha$,$p$)$^{17}$F rate below 2 GK. As well, a possible new excited state in $^{18}$Ne was observed at $E_{x}$=6.85$pm$0.11 MeV with tentative $J$=0 assignment. This state could be the analog state of the 6.880 MeV (0$^{-}$) level in the mirror nucleus $^{18}$O, or a bandhead state (0$^+$) of the six-particle four-hole (6$p$-4$h$) band. A new thermonuclear $^{14}$O($alpha$,$p$)$^{17}$F rate has been determined, and the astrophysical impact of multiple recent rates has been examined using an XRB model. Contrary to previous expectations, we find only modest impact on predicted nuclear energy generation rates from using reaction rates differing by up to several orders of magnitude.
Classical novae result from thermonuclear explosions producing several $gamma$-ray emitters which are prime targets for satellites observing in the MeV range. The early 511 keV gamma-ray emission depends critically on the $^{18}$F(p,$alpha$)$^{15}$O reaction rate which, despite many experimental and theoretical efforts, still remains uncertain. One of the main uncertainties in the $^{18}$F(p,$alpha$)$^{15}$O reaction rate is the contribution in the Gamow window of interference between sub-threshold $^{19}$Ne states and known broad states at higher energies. Therefore the goal of this work is to clarify the existence and the nature of these sub-threshold states. States in the $^{19}$Ne compound nucleus were studied at the Tandem-ALTO facility using the $^{19}$F($^3$He,t)$^{19}$Ne charge exchange reaction. Tritons were detected with an Enge Split-pole spectrometer while decaying protons or $alpha$-particles from unbound $^{19}$Ne states were collected, in coincidence, with a double-sided silicon strip detector array. Angular correlations were extracted and constraints on the spin and parity of decaying states established. The coincidence yield at $E_x$ = 6.29 MeV was observed to be high spin, supporting the conclusion that it is indeed a doublet consisting of high spin and low spin components. Evidence for a broad, low spin state was observed around 6 MeV. Branching ratios were extracted for several states above the proton threshold and were found to be consistent with the literature. R-matrix calculations show the relative contribution of sub-threshold states to the astrophysically important energy region above the proton threshold. The levels schemes of $^{19}$Ne and $^{19}$F are still not sufficiently well known and further studies of the analogue assignments are needed. The tentative broad state at 6 MeV may only play a role if the reduced proton width is large.
The first study of resonances in $^{17}$O+$alpha$ elastic scattering was carried out using the Thick Target Inverse Kinematics (TTIK) method. The data were analyzed in the framework of an $textit{R}$-matrix approach. Many $alpha$-cluster states were found in the $^{21}$Ne excitation region of the 9-13 MeV excitation energy including the first observation of a broad $textit{l}$=0 state in an odd-even nucleus, which is likely the analog of the broad 0$^+$ at 8 MeV in $^{20}$Ne. The observed structure in $^{21}$Ne appeared to be strikingly similar to that in $^{20}$Ne populated in the resonance $^{16}$O+$alpha$ scattering. The results are also useful for refinement of data on an $^{17}$O($alpha$,$textit{n}$) reaction important for astrophysics.
Context. Material processed by the CNO cycle in stellar interiors is enriched in 17O. When mixing processes from the stellar surface reach these layers, as occurs when stars become red giants and undergo the first dredge up, the abundance of 17O incr eases. Such an occurrence explains the drop of the 16O/17O observed in RGB stars with mass larger than 1.5 M_solar. As a consequence, the interstellar medium is continuously polluted by the wind of evolved stars enriched in 17O . Aims. Recently, the Laboratory for Underground Nuclear Astrophysics (LUNA) collaboration released an improved rate of the 17O(p,alpha)14N reaction. In this paper we discuss the impact that the revised rate has on the 16O/17O ratio at the stellar surface and on 17O stellar yields. Methods. We computed stellar models of initial mass between 1 and 20 M_solar and compared the results obtained by adopting the revised rate of the 17O(p,alpha)14N to those obtained using previous rates. Results. The post-first dredge up 16O/17O ratios are about 20% larger than previously obtained. Negligible variations are found in the case of the second and the third dredge up. In spite of the larger 17O(p,alpha)14N rate, we confirm previous claims that an extra-mixing process on the red giant branch, commonly invoked to explain the low carbon isotopic ratio observed in bright low-mass giant stars, marginally affects the 16O/17O ratio. Possible effects on AGB extra-mixing episodes are also discussed. As a whole, a substantial reduction of 17O stellar yields is found. In particular, the net yield of stars with mass ranging between 2 and 20 M_solar is 15 to 40% smaller than previously estimated. Conclusions. The revision of the 17O(p,alpha)14N rate has a major impact on the interpretation of the 16O/17O observed in evolved giants, in stardust grains and on the 17O stellar yields.
103 - D. Kahl , J. Jose , P.J. Woods 2021
Context. Direct observation of gamma-ray emission from the decay of $^{18}$F ejected in classical nova outbursts remains a major focus of the nuclear astrophysics community. However, modeling the abundance of ejected $^{18}$F, and thus the predicted detectability distance of a gamma-ray signal near 511 keV emitted from these transient thermonuclear episodes, is hampered by significant uncertainties in our knowledge of the key $^{18}$F(p,$alpha$) reaction rate. Aims. We analyze uncertainties in the most recent nuclear physics experimental results employed to calculate the $^{18}$F(p,$alpha$) reaction rate. Our goal is to determine which uncertainties have the most profound influence on the predicted abundance of $^{18}$F ejected from novae, in order to guide future experimental works. Methods. We calculated a wide range of $^{18}$F(p,$alpha$) reaction rates using R-Matrix formalism, allowing us to take into account all interference effects. Using a selection of 16 evenly-spaced rates over the full range, we performed 16 new hydrodynamic nova simulations. Results. We performed one of the most thorough theoretical studies of the impact of the $^{18}$F(p,$alpha$) reaction in classical novae to date. The $^{18}$F(p,$alpha$) rate remains highly uncertain at nova temperatures, resulting in a factor ~10 uncertainty in the predicted abundance of $^{18}$F ejected from nova explosions. We also found that the abundance of $^{18}$F may be strongly correlated with that of $^{19}$F. Conclusions. Despite numerous nuclear physics uncertainties affecting the $^{18}$F(p,$alpha$) reaction rate, which are dominated by unknown interference signs between 1/2$^+$ and 3/2$^+$ resonances, future experimental work should focus on firmly and precisely determining the directly measurable quantum properties of the subthreshold states in the compound nucleus $^{19}$Ne near 6.13 and 6.29 MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا