ترغب بنشر مسار تعليمي؟ اضغط هنا

A confirmative spin-parity assignment for the key 6.15 MeV state in $^{18}$Ne of astrophysical importance

64   0   0.0 ( 0 )
 نشر من قبل Jianjun He Dr
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Proton resonant states in $^{18}$Ne have been investigated by the resonant elastic scattering of $^{17}$F+$p$. The $^{17}$F beam was separated by the CNS radioactive ion beam separator (CRIB), and bombarded a thick H$_2$ gas target at 3.6 MeV/nucleon. The recoiled light particles were measured by using three sets of ${Delta}$E-E Si telescope at scattering angles of $theta$$_{lab}$$approx 3^circ$, 10$^circ$ and 18$^circ$, respectively. Four resonances, {it i.e.}, at $E_{x}$=6.15, 6.30, 6.85, and 7.05 MeV, were observed clearly. By $R$-matrix analysis of the excitation functions, $J^{pi}$=1$^-$ was firmly assigned to the 6.15 MeV state which is a key state in calculating the reaction rate of $^{14}$O($alpha$,$p$)$^{17}$F reaction. This reaction was thought to be one of the most probable key reactions for the breakout from the hot-CNO cycle to the $rp$-process in type I x-ray bursts In addition, a new excited state observed at $E_{x}$=6.85 MeV was tentatively assigned as 0$^{-}$, which could be the analog state of 6.880 MeV, 0$^{-}$ in mirror $^{18}$O.


قيم البحث

اقرأ أيضاً

Detection of nuclear-decay $gamma$ rays provides a sensitive thermometer of nova nucleosynthesis. The most intense $gamma$-ray flux is thought to be annihilation radiation from the $beta^+$ decay of $^{18}$F, which is destroyed prior to decay by the $^{18}$F($p$,$alpha$)$^{15}$O reaction. Estimates of $^{18}$F production had been uncertain, however, because key near-threshold levels in the compound nucleus, $^{19}$Ne, had yet to be identified. This Letter reports the first measurement of the $^{19}$F($^{3}$He,$tgamma$)$^{19}$Ne reaction, in which the placement of two long-sought 3/2$^+$ levels is suggested via triton-$gamma$-$gamma$ coincidences. The precise determination of their resonance energies reduces the upper limit of the rate by a factor of $1.5-17$ at nova temperatures and reduces the average uncertainty on the nova detection probability by a factor of 2.1.
184 - A.S. Demyanova 2020
Study of the $^{11}$B($^{3}$He,d)$^{12}$C reaction at incident $^{3}$He energy E$_{lab}$ = 25 MeV has been performed at the K-130 cyclotron at the University of Jyvaskyla, Finland. Differential cross sections have been measured for the 13.35 MeV stat e and for the states with excitation energy around 20 MeV. The data were analyzed with the DWBA method. A tentative assignment, 4$^{-}$, is given for the state at 13.35 MeV. For the state at 20.98 MeV, the spin-parity 3$^{-}$ and the isospin T = 0 are assigned for the first time. Our model description of the broad state at 21.6 MeV is consistent with the previous assignments of isospin T = 0 and spin-parity of 2$^{+}$ and 3$^{-}$. The excited state at 22.4 MeV may have possible spin-parities of either 6$^{+}$ or 5$^{-}$. The collected statistics was insufficient to solve this question.
The $^{18}$Ne($alpha,p$)$^{21}$Na reaction plays a significant role in Type-I X-ray bursts. It is a major path in the breakout from the hot-CNO cycles to the synthesis of heavier elements in the $alpha p$-- and $rp$-processes. An experiment to determ ine the cross section of this reaction was performed with the ANASEN active-target detector system, determining the cross section at energies between 2.5 and 4 MeV in the center-of-mass frame. The measured cross sections for reactions populating the ground state in $^{21}$Na are consistent with results obtained from the time-inverse reaction, but significantly lower than the previously published experimental data of direct measurements. The total cross sections are also compared with those derived from indirect methods and statistical-model calculations. This experiment establishes a new experimental data set on the excitation function of the $^{18}$Ne($alpha,p$)$^{21}$Na reaction, revealing the significance of the excited states contributions to the total reaction cross section and allowing to separate the contribution of the $(alpha,2p)$ reaction. The impact of the measured cross section on thermal reaction rates is discussed.
We conducted the coincidence measurement of $alpha$ particles inelastically scattered from ${}^{20}$Ne at $0^{circ}$ and decay charged particles in order to search for the alpha-particle condensed state. We compared the measured excitation-energy spe ctrum and decay branching ratio with the statistical-decay-model calculations, and found that the newly observed states at $E_x$ = 23.6, 21.8, and 21.2 MeV in ${}^{20}$Ne are strongly coupled to a candidate for the 4$alpha$ condensed state in ${}^{16}$O. This result presents the first strong evidence that these states are the candidates for the 5$alpha$ condensed state.
89 - J. Hu , J.J. He , S.W. Xu 2010
Properties of proton resonances in $^{18}$Ne have been investigated efficiently by utilizing a technique of proton resonant elastic scattering with a $^{17}$F radioactive ion (RI) beam and a thick proton target. A 4.22~MeV/nucleon $^{17}$F RI beam wa s produced via a projectile-fragmentation reaction, and subsequently separated by a Radioactive Ion Beam Line in Lanzhou ({tt RIBLL}). Energy spectra of the recoiled protons were measured by two sets of $Delta$E-E silicon telescope at center-of-mass scattering angles of $theta_{c.m.}$$approx$175${^circ}$$pm$5${^circ}$, $theta_{c.m.}$$approx$152${^circ}$$pm$8${^circ}$, respectively. Several proton resonances in $^{18}$Ne were observed, and their resonant parameters have been determined by an $R$-matrix analysis of the differential cross sections in combination with the previous results. The resonant parameters are related to the reaction-rate calculation of the stellar $^{14}$O($alpha$,$p$)$^{17}$F reaction, which was thought to be the breakout reaction from the hot CNO cycles into the $rp$-process in x-ray bursters. Here, $J^pi$=(3$^-$, 2$^-$) are tentatively assigned to the 6.15-MeV state which was thought the key 1$^-$ state previously. In addition, a doublet structure at 7.05 MeV are tentatively identified, and its contribution to the resonant reaction rate of $^{14}$O($alpha$,$p$)$^{17}$F could be enhanced by at least factors of about 4$sim$6 in comparison with the previous estimation involving only a singlet. The present calculated resonant rates are much larger than those previous values, and it may imply that this breakout reaction could play a crucial role under x-ray bursters conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا