ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose quantum neural networks that include multi-qubit interactions in the neural potential leading to a reduction of the network depth without losing approximative power. We show that the presence of multi-qubit potentials in the quantum percep trons enables more efficient information processing tasks such as XOR gate implementation and prime numbers search, while it also provides a depth reduction to construct distinct entangling quantum gates like CNOT, Toffoli, and Fredkin. This simplification in the network architecture paves the way to address the connectivity challenge to scale up a quantum neural network while facilitates its training.
Nuclear magnetic resonance (NMR) schemes can be applied to micron-, and nanometer-sized samples by the aid of quantum sensors such as nitrogen-vacancy (NV) color centers in diamond. These minute devices allow for magnetometry of nuclear spin ensemble s with high spatial and frequency resolution at ambient conditions, thus having a clear impact in different areas such as chemistry, biology, medicine, and material sciences. In practice, NV quantum sensors are driven by microwave (MW) control fields with a twofold objective: On the one hand, MW fields bridge the energy gap between NV and nearby nuclei which enables a coherent and selective coupling among them while, on the other hand, MW fields remove environmental noise on the NV leading to enhanced interrogation time. In this work we review distinct MW radiation patterns, or dynamical decoupling techniques, for nanoscale NMR applications.
We demonstrate the emergence of selective $k$-photon interactions in the strong and ultrastrong coupling regimes of the quantum Rabi model with a Stark coupling term. In particular, we show that the interplay between the rotating and counter-rotating terms produces multi-photon interactions whose resonance frequencies depend, due to the Stark term, on the state of the bosonic mode. We develop an analytical framework to explain these $k$-photon interactions by using time-dependent perturbation theory. Finally, we propose a method to achieve the quantum simulation of the quantum Rabi model with a Stark term by using the internal and vibrational degrees of freedom of a trapped ion, and demonstrate its performance with numerical simulations considering realistic physical parameters.
We present a protocol for designing appropriately extended $pi$ pulses that achieves tunable, thus selective, electron-nuclear spin interactions with low-driving radiation power. Our method is general since it can be applied to different quantum sens or devices such as nitrogen vacancy centers or silicon vacancy centers. Furthermore, it can be directly incorporated in commonly used stroboscopic dynamical decoupling techniques to achieve enhanced nuclear selectivity and control, which demonstrates its flexibility.
We present an experimental realization of a measurement-based adaptation protocol with quantum reinforcement learning in a Rigetti cloud quantum computer. The experiment in this few-qubit superconducting chip faithfully reproduces the theoretical pro posal, setting the first steps towards a semiautonomous quantum agent. This experiment paves the way towards quantum reinforcement learning with superconducting circuits.
We develop energy efficient, continuous microwave schemes to couple electron and nuclear spins, using phase or amplitude modulation to bridge their frequency difference. These controls have promising applications in biological systems, where microwav e power should be limited, as well as in situations with high Larmor frequencies due to large magnetic fields and nuclear magnetic moments. These include nanoscale NMR where high magnetic fields achieves enhanced thermal nuclear polarisation and larger chemical shifts. Our controls are also suitable for quantum information processors and nuclear polarisation schemes.
The realisation of optically detected magnetic resonance via nitrogen vacancy centers in diamond faces challenges at high magnetic fields which include growing energy consumption of control pulses as well as decreasing sensitivities. Here we address these challenges with the design of shaped pulses in microwave control sequences that achieve orders magnitude reductions in energy consumption and concomitant increases in sensitivity when compared to standard top-hat microwave pulses. The method proposed here is general and can be applied to any quantum sensor subjected to pulsed control sequences.
We propose a pulsed dynamical decoupling protocol as the generator of tunable, fast, and robust quantum phase gates between two microwave-driven trapped ion hyperfine qubits. The protocol consists of sequences of $pi$-pulses acting on ions that are o riented along an externally applied magnetic field gradient. In contrast to existing approaches, in our design the two vibrational modes of the ion chain cooperate under the influence of the external microwave driving to achieve significantly increased gate speeds. Our scheme is robust against the dominant noise sources, which are errors on the magnetic field and microwave pulse intensities, as well as motional heating, predicting two-qubit gates with fidelities above $99.9%$ in tens of microseconds.
We propose a protocol that achieves arbitrary N-qubit interactions between nuclear spins and that can measure directly nuclear many-body correlators by appropriately making the nuclear spins interact with a nitrogen vacancy (NV) center electron spin. The method takes advantage of recently introduced dynamical decoupling techniques and demonstrates that action on the electron spin is sufficient to fully exploit nuclear spins as robust quantum registers. Our protocol is general, being applicable to other nuclear spin based platforms with electronic spin defects acting as mediators as the case of silicon carbide.
The nitrogen vacancy (NV) color center in diamond is an enormously important platform for the development of quantum sensors, including for single spin and single molecule NMR. Detection of weak single-spin signals is greatly enhanced by repeated seq uences of microwave pulses; in these dynamical decoupling (DD) techniques, the key control parameters swept in the experiment are the time intervals, $tau$, between pulses. Here we show that, in fact, the pulse duration offers a powerful additional control parameter. While previously, a non-negligible pulse-width has been considered simply a source of experimental error, here we elucidate the underlying quantum dynamics: we identify a landscape of quantum-state crossings which are usually closed (inactive) but may be controllably activated (opened) by adjusting the pulse-width from zero. We identify these crossings with recently observed but unexpected dips (so called spurious dips) seen in the quantum coherence of the NV spin. With this new understanding, both the position and strength of these sharp features may be accurately controlled; they co-exist with the usual broader coherence dips of short-duration microwave pulses, but their sharpness allows for higher resolution spectroscopy with quantum diamond sensors, or their analogues.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا