ﻻ يوجد ملخص باللغة العربية
We present a protocol for designing appropriately extended $pi$ pulses that achieves tunable, thus selective, electron-nuclear spin interactions with low-driving radiation power. Our method is general since it can be applied to different quantum sensor devices such as nitrogen vacancy centers or silicon vacancy centers. Furthermore, it can be directly incorporated in commonly used stroboscopic dynamical decoupling techniques to achieve enhanced nuclear selectivity and control, which demonstrates its flexibility.
New functionalities in nonlinear optics will require systems with giant optical nonlinearity as well as compatibility with photonic circuit fabrication techniques. Here we introduce a new platform based on strong light-matter coupling between wavegui
We present a novel scheme for performing a conditional phase gate between two spin qubits in adjacent semiconductor quantum dots through delocalized single exciton states, formed through the inter-dot Foerster interaction. We consider two resonant qu
We present and analyze an effective scheme for preparing squeezed spin states in a novel spin-mechanical hybrid device, which is realized by a single crystal diamond waveguide with built-in silicon-vacancy (SiV) centers. After studying the strain cou
Versatile nanoscale sensors that are susceptible to changes in a variety of physical quantities often exhibit limited selectivity. We propose a novel scheme based on microwave-dressed spin states for optically probed nanoscale temperature detection u
A strong, far-detuned laser can shift the energy levels of an optically active quantum system via the AC Stark effect. We demonstrate that the polarization of the laser results in a spin-selective modification to the energy structure of a charged qua