ﻻ يوجد ملخص باللغة العربية
We propose quantum neural networks that include multi-qubit interactions in the neural potential leading to a reduction of the network depth without losing approximative power. We show that the presence of multi-qubit potentials in the quantum perceptrons enables more efficient information processing tasks such as XOR gate implementation and prime numbers search, while it also provides a depth reduction to construct distinct entangling quantum gates like CNOT, Toffoli, and Fredkin. This simplification in the network architecture paves the way to address the connectivity challenge to scale up a quantum neural network while facilitates its training.
A new method for compiling quantum algorithms is proposed and tested for a three qubit system. The proposed method is to decompose a a unitary matrix U, into a product of simpler U j via a neural network. These U j can then be decomposed into product
Quantum networks distributed over distances greater than a few kilometers will be limited by the time required for information to propagate between nodes. We analyze protocols that are able to circumvent this bottleneck by employing multi-qubit nodes
Quantum algorithms require a universal set of gates that can be implemented in a physical system. For these, an optimal decomposition into a sequence of available operations is desired. Here, we present a method to find such sequences for a small-sca
Quantum State Tomography is the task of determining an unknown quantum state by making measurements on identical copies of the state. Current algorithms are costly both on the experimental front -- requiring vast numbers of measurements -- as well as
We investigate two-party quantum teleportation through noisy channels for multi-qubit Greenberger-Horne-Zeilinger (GHZ) states and find which state loses less quantum information in the process. The dynamics of states is described by the master equat