ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe an extension of the most recent version of the Planck Catalogue of Compact Sources (PCCS2), produced using a new multi-band Bayesian Extraction and Estimation Package (BeeP). BeeP assumes that the compact sources present in PCCS2 at 857 G Hz have a dust-like spectral energy distribution, which leads to emission at both lower and higher frequencies, and adjusts the parameters of the source and its SED to fit the emission observed in Plancks three highest frequency channels at 353, 545, and 857 GHz, as well as the IRIS map at 3000 GHz. In order to reduce confusion regarding diffuse cirrus emission, BeePs data model includes a description of the background emission surrounding each source, and it adjusts the confidence in the source parameter extraction based on the statistical properties of the spatial distribution of the background emission. BeeP produces the following three new sets of parameters for each source: (a) fits to a modified blackbody (MBB) thermal emission model of the source; (b) SED-independent source flux densities at each frequency considered; and (c) fits to an MBB model of the background in which the source is embedded. BeeP also calculates, for each source, a reliability parameter, which takes into account confusion due to the surrounding cirrus. We define a high-reliability subset (BeeP/base), containing 26 083 sources (54.1 per cent of the total PCCS2 catalogue), the majority of which have no information on reliability in the PCCS2. The results of the BeeP extension of PCCS2, which are made publicly available via the PLA, will enable the study of the thermal properties of well-defined samples of compact Galactic and extra-galactic dusty sources.
The largest temperature anisotropy in the cosmic microwave background (CMB) is the dipole, which has been measured with increasing accuracy for more than three decades, particularly with the Planck satellite. The simplest interpretation of the dipole is that it is due to our motion with respect to the rest frame of the CMB. Since current CMB experiments infer temperature anisotropies from angular intensity variations, the dipole modulates the temperature anisotropies with the same frequency dependence as the thermal Sunyaev-Zeldovich (tSZ) effect. We present the first, and significant, detection of this signal in the tSZ maps and find that it is consistent with direct measurements of the CMB dipole, as expected. The signal contributes power in the tSZ maps, which is modulated in a quadrupolar pattern, and we estimate its contribution to the tSZ bispectrum, noting that it contributes negligible noise to the bispectrum at relevant scales.
Analysis of the Planck 2018 data set indicates that the statistical properties of the cosmic microwave background (CMB) temperature anisotropies are in excellent agreement with previous studies using the 2013 and 2015 data releases. In particular, th ey are consistent with the Gaussian predictions of the $Lambda$CDM cosmological model, yet also confirm the presence of several so-called anomalies on large angular scales. The novelty of the current study, however, lies in being a first attempt at a comprehensive analysis of the statistics of the polarization signal over all angular scales, using either maps of the Stokes parameters, $Q$ and $U$, or the $E$-mode signal derived from these using a new methodology (which we describe in an appendix). Although remarkable progress has been made in reducing the systematic effects that contaminated the 2015 polarization maps on large angular scales, it is still the case that residual systematics (and our ability to simulate them) can limit some tests of non-Gaussianity and isotropy. However, a detailed set of null tests applied to the maps indicates that these issues do not dominate the analysis on intermediate and large angular scales (i.e., $ell lesssim 400$). In this regime, no unambiguous detections of cosmological non-Gaussianity, or of anomalies corresponding to those seen in temperature, are claimed. Notably, the stacking of CMB polarization signals centred on the positions of temperature hot and cold spots exhibits excellent agreement with the $Lambda$CDM cosmological model, and also gives a clear indication of how Planck provides state-of-the-art measurements of CMB temperature and polarization on degree scales.
We present the first far infrared (FIR) dust emission polarization map covering the full extent Milky Ways Central molecular zone (CMZ). The data, obtained with the PILOT balloon-borne experiment, covers the Galactic Center region $-2,^circ<l<2,^circ $, $-4,^circ<b<3,^circ$ at a wavelength of 240 $mu$m and an angular resolution $2.2,$. From our measured dust polarization angles, we infer a magnetic field orientation projected onto the plane of the sky that is remarkably ordered over the full extent of the CMZ, with an average tilt angle of $simeq 22,^circ$ clockwise with respect to the Galactic plane. Our results confirm previous claims that the field traced by dust polarized emission is oriented nearly orthogonal to the field traced by GHz radio synchrotron emission in the Galactic Center region. The observed field structure is globally compatible with the latest Planck polarization data at 353 GHz and 217 GHz. Upon subtraction of the extended emission in our data, the mean field orientation that we obtain shows good agreement with the mean field orientation measured at higher angular resolution by the JCMT within the 20 km/s and 50 km/s molecular clouds. We find no evidence that the magnetic field orientation is related to the 100 pc twisted ring structure within the CMZ. We propose that the low polarization fraction in the Galactic Center region and the highly ordered projected field orientation can be reconciled if the field is strong, with a 3D geometry that is is mostly oriented $simeq 15,^circ$ with respect to the line-of-sight towards the Galactic center. Assuming equipartition between the magnetic pressure and ram pressure, we obtain magnetic field strengths estimates as high as a few mG for several CMZ molecular clouds.
We present full-sky maps of the cosmic microwave background (CMB) and polarized synchrotron and thermal dust emission, derived from the third set of Planck frequency maps. These products have significantly lower contamination from instrumental systematic effects than previo
The Polarized Instrument for Long-wavelength Observation of the Tenuous interstellar medium (PILOT) is a balloon-borne experiment aiming at measuring the polarized emission of thermal dust at a wavelength of 240 mm (1.2 THz). A first PILOT flight (fl ight#1) of the experiment took place from Timmins, Ontario, Canada, in September 2015 and a second flight (flight#2) took place from Alice Springs, Australia in april 2017. In this paper, we present the inflight performance of the instrument during these two flights. We concentrate on performances during flight#2, but allude to flight#1 performances if significantly different. We first present a short description of the instrument and the flights. We determine the time constants of our detectors combining inflight information from the signal decay following high energy particle impacts (glitches) and of our internal calibration source. We use these time constants to deconvolve the data timelines and analyse the optical quality of the instrument as measured on planets. We then analyse the structure and polarization of the instrumental background. We measure the detector response flat field and its time variations using the signal from the residual atmosphere and of our internal calibration source. Finally, we analyze the detector noise spectral and temporal properties. The in-flight performances are found to be satisfactory and globally in line with expectations from ground calibrations. We conclude by assessing the expected in-flight sensitivity of the instrument in light of the above in-flight performances.
The study of polarized dust emission has become entwined with the analysis of the cosmic microwave background (CMB) polarization. We use new Planck maps to characterize Galactic dust emission as a foreground to the CMB polarization. We present Planck EE, BB, and TE power spectra of dust polarization at 353 GHz for six nested sky regions covering from 24 to 71 % of the sky. We present power-law fits to the angular power spectra, yielding evidence for statistically significant variations of the exponents over sky regions and a difference between the values for the EE and BB spectra. The TE correlation and E/B power asymmetry extend to low multipoles that were not included in earlier Planck polarization papers. We also report evidence for a positive TB dust signal. Combining data from Planck and WMAP, we determine the amplitudes and spectral energy distributions (SEDs) of polarized foregrounds, including the correlation between dust and synchrotron polarized emission, for the six sky regions as a function of multipole. This quantifies the challenge of the component separation procedure required for detecting the reionization and recombination peaks of primordial CMB B modes. The SED of polarized dust emission is fit well by a single-temperature modified blackbody emission law from 353 GHz to below 70 GHz. For a dust temperature of 19.6 K, the mean spectral index for dust polarization is $beta_{rm d}^{P} = 1.53pm0.02 $. By fitting multi-frequency cross-spectra, we examine the correlation of the dust polarization maps across frequency. We find no evidence for decorrelation. If the Planck limit for the largest sky region applies to the smaller sky regions observed by sub-orbital experiments, then decorrelation might not be a problem for CMB experiments aiming at a primordial B-mode detection limit on the tensor-to-scalar ratio $rsimeq0.01$ at the recombination peak.
In this paper we describe QUBIC, an experiment that takes up the challenge posed by the detection of primordial gravitational waves with a novel approach, that combines the sensitivity of state-of-the art bolometric detectors with the systematic effe cts control typical of interferometers. The so-called self-calibration is a technique deeply rooted in the interferometric nature of the instrument and allows us to clean the measured data from instrumental effects. The first module of QUBIC is a dual band instrument (150 GHz and 220 GHz) that will be deployed in Argentina during the Fall 2018.
Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100-857 GHz) and these are then compared with models and existing data. In our a nalysis, we have also included estimates of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturns rings to the planets total flux density suggests a best fit value for the spectral index of Saturns ring system of $beta _mathrm{ring} = 2.30pm0.03$ over the 30-1000 GHz frequency range. The average ratio between the Planck-HFI measurements and the adopted model predictions for all five planets (excluding Jupiter observations for 353 GHz) is 0.997, 0.997, 1.018, and 1.032 for 100, 143, 217, and 353 GHz, respectively. Model predictions for planet thermodynamic temperatures are therefore consistent with the absolute calibration of Planck-HFI detectors at about the three-percent-level. We compare our measurements with published results from recent cosmic microwave background experiments. In particular, we observe that the flux densities measured by Planck HFI and WMAP agree to within 2%. These results allow experiments operating in the mm-wavelength range to cross-calibrate against Planck and improve models of radiative transport used in planetary science.
QUBIC is an instrument aiming at measuring the B mode polarisation anisotropies at medium scales angular scales (30-200 multipoles). The search for the primordial CMB B-mode polarization signal is challenging, because of many difficulties: smallness of the expected signal, instrumental systematics that could possibly induce polarization leakage from the large E signal into B, brighter than anticipated polarized foregrounds (dust) reducing to zero the initial hope of finding sky regions clean enough to have a direct primordial B-modes observation. The QUBIC instrument is designed to address all aspects of this challenge with a novel kind of instrument, a Bolometric Interferometer, combining the background-limited sensitivity of Transition-Edge-Sensors and the control of systematics allowed by the observation of interference fringe patterns, while operating at two frequencies to disentangle polarized foregrounds from primordial B mode polarization. Its characteristics are described in details in this Technological Design Report.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا