ﻻ يوجد ملخص باللغة العربية
In this paper we describe QUBIC, an experiment that takes up the challenge posed by the detection of primordial gravitational waves with a novel approach, that combines the sensitivity of state-of-the art bolometric detectors with the systematic effects control typical of interferometers. The so-called self-calibration is a technique deeply rooted in the interferometric nature of the instrument and allows us to clean the measured data from instrumental effects. The first module of QUBIC is a dual band instrument (150 GHz and 220 GHz) that will be deployed in Argentina during the Fall 2018.
The Q & U Bolometric Interferometer for Cosmology, QUBIC, is an innovative experiment designed to measure the polarization of the Cosmic Microwave Background and in particular the signature left therein by the inflationary expansion of the Universe.
One of the major challenges of modern cosmology is the detection of B-mode polarization anisotropies in the CMB. These originate from tensor fluctuations of the metric produced during the inflationary phase. Their detection would therefore constitute
In this paper we describe QUBIC, an experiment that will observe the polarized microwave sky with a novel approach, which combines the sensitivity of state-of-the art bolometric detectors with the systematic effects control typical of interferometers
3D printing presents an attractive alternative to visual representation of physical datasets such as astronomical images that can be used for research, outreach or teaching purposes, and is especially relevant to people with a visual disability. We h
QUBIC (Q & U Bolometric Interferometer for Cosmology) is an international ground-based experiment dedicated in the measurement of the polarized fluctuations of the Cosmic Microwave Background (CMB). It is based on bolometric interferometry, an origin