ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the dynamical behaviour of ultracold fermionic atoms loaded into an optical lattice under the presence of an effective magnetic flux, induced by spin-orbit coupled laser driving. At half filling, the resulting system can emulate a variety of iconic spin-1/2 models such as an Ising model, an XY model, a generic XXZ model with arbitrary anisotropy, or a collective one-axis twisting model. The validity of these different spin models is examined across the parameter space of flux and driving strength. In addition, there is a parameter regime where the system exhibits chiral, persistent features in the long-time dynamics. We explore these properties and discuss the role played by the systems symmetries. We also discuss experimentally-viable implementations.
The boundary of a topological insulator (TI) hosts an anomaly restricting its possible phases: e.g. 3D strong and weak TIs maintain surface conductivity at any disorder if symmetry is preserved on-average, at least when electron interactions on the s urface are weak. However the interplay of strong interactions and disorder with the boundary anomaly has not yet been theoretically addressed. Here we study this combination for the edge of a 2D TI and the surface of a 3D weak TI, showing how it can lead to an Anomalous Many Body Localized (AMBL) phase that preserves the anomaly. We discuss how the anomalous Kramers parity switching with pi flux arises in the bosonized theory of the localized helical state. The anomaly can be probed in localized boundaries by electrostatically sensing nonlinear hopping transport with e/2 shot noise. Our AMBL construction in 3D weak TIs fails for 3D strong TIs, suggesting that their anomaly restrictions are distinguished by strong interactions.
We study a driven, spin-orbit coupled fermionic system in a lattice at the resonant regime where the drive frequency equals the Hubbard repulsion, for which non-trivial constrained dynamics emerge at fast timescales. An effective density-dependent tu nneling model is derived, and examined in the sparse filling regime in 1D. The system exhibits entropic self-localization, where while even numbers of atoms propagate ballistically, odd numbers form localized bound states induced by an effective attraction from a higher configurational entropy. These phenomena occur in the strong coupling limit where interactions only impose a constraint with no explicit Hamiltonian term. We show how the constrained dynamics lead to quantum few-body scars and map to an Anderson impurity model with an additional intriguing feature of non-reciprocal scattering. Connections to many-body scars and localization are also discussed.
Half-filled Landau levels admit the theoretically powerful fermion-vortex duality but longstanding puzzles remain in their experimental realization as $ u_T=1$ quantum Hall bilayers, further complicated by Zheng et als recent numerical discovery of a n unknown phase at intermediate layer spacing. Here we propose that half-filled quantum Hall bilayers ($ u_T=1$) at intermediate values of the interlayer distance $d/ell_B$ enter a phase with textit{paired exciton condensation}. This phase shows signatures analogous to the condensate of interlayer excitons (electrons bound to opposite-layer holes) well-known for small $d$ but importantly condenses only exciton pairs. To study it theoretically we derive an effective Hamiltonian for bosonic excitons $b_k$ and show that the single-boson condensate suddenly vanishes for $d$ above a critical $d_{c1} approx 0.95 l_B$. The nonzero condensation fraction $n_0=langle b(0) rangle ^2$ at $d_{c1}$ suggests that the phase stiffness remains nonzero for a range of $d>d_{c1}$ via an intermediate phase of paired-exciton condensation, exhibiting $langle bb rangle eq 0$ while $langle b rangle =0$. Motivated by these results we derive a $K$-matrix description of the paired exciton condensates topological properties from composite boson theory. The elementary charged excitation is a half meron with $frac{1}{4}$ charge and fractional self-statistics $theta_s=frac{pi}{16}$. Finally we argue for an equivalent description via the $d=infty$ limit through topological charge-$4e$ pairing of composite fermions. We suggest graphene double layers should access this phase and propose various experimental signatures, including an Ising transition $T_{Ising}$ below the Berezinskii-Kosterlitz-Thouless transition $T_{BKT}$ at $d sim d_{c1}$.
Recently measurements on various spin-1/2 quantum magnets such as H$_3$LiIr$_2$O$_6$, LiZn$_2$Mo$_3$O$_8$, ZnCu$_3$(OH)$_6$Cl$_2$ and 1T-TaS$_2$ -- all described by magnetic frustration and quenched disorder but with no other common relation -- never theless showed apparently universal scaling features at low temperature. In particular the heat capacity C[H,T] in temperature T and magnetic field H exhibits T/H data collapse reminiscent of scaling near a critical point. Here we propose a theory for this scaling collapse based on an emergent random-singlet regime extended to include spin-orbit coupling and antisymmetric Dzyaloshinskii-Moriya (DM) interactions. We derive the scaling $C[H,T]/T sim H^{-gamma} F_q[T/H]$ with $F_q[x] = x^{q}$ at small $x$, with $q in$ (0,1,2) an integer exponent whose value depends on spatial symmetries. The agreement with experiments indicates that a fraction of spins form random valence bonds and that these are surrounded by a quantum paramagnetic phase. We also discuss distinct scaling for magnetization with a $q$-dependent subdominant term enforced by Maxwells relations.
We investigate the non-Abelian topological chiral spin liquid phase in the two-dimensional (2D) Kitaev honeycomb model subject to a magnetic field. By combining density matrix renormalization group (DMRG) and exact diagonalization (ED) we study the e nergy spectra, entanglement, topological degeneracy, and expectation values of Wilson loop operators, allowing for robust characterization. While the ferromagnetic (FM) Kitaev spin liquid is already destroyed by a weak magnetic field with Zeeman energy $H_*^text{FM} approx 0.02$, the antiferromagnetic (AFM) spin liquid remains robust up to a magnetic field that is an order of magnitude larger, $H_*^text{AFM} approx 0.2$. Interestingly, for larger fields $H_*^text{AFM} < H < H_{**}^text{AFM}$, an intermediate gapless phase is observed, before a second transition to the high-field partially-polarized paramagnet. We attribute this rich phase diagram, and the remarkable stability of the chiral topological phase in the AFM Kitaev model, to the interplay of strong spin-orbit coupling and frustration enhanced by the magnetic field. Our findings suggest relevance to recent experiments on RuCl$_3$ under magnetic fields.
We analyze the effect of quenched disorder on spin-1/2 quantum magnets in which magnetic frustration promotes the formation of local singlets. Our results include a theory for 2d valence-bond solids subject to weak bond randomness, as well as extensi ons to stronger disorder regimes where we make connections with quantum spin liquids. We find, on various lattices, that the destruction of a valence-bond solid phase by weak quenched disorder leads inevitably to the nucleation of topological defects carrying spin-1/2 moments. This renormalizes the lattice into a strongly random spin network with interesting low-energy excitations. Similarly when short-ranged valence bonds would be pinned by stronger disorder, we find that this putative glass is unstable to defects that carry spin-1/2 magnetic moments, and whose residual interactions decide the ultimate low energy fate. Motivated by these results we conjecture Lieb-Schultz-Mattis-like restrictions on ground states for disordered magnets with spin-1/2 per statistical unit cell. These conjectures are supported by an argument for 1d spin chains. We apply insights from this study to the phenomenology of YbMgGaO$_4$, a recently discovered triangular lattice spin-1/2 insulator which was proposed to be a quantum spin liquid. We instead explore a description based on the present theory. Experimental signatures, including unusual specific heat, thermal conductivity, and dynamical structure factor, and their behavior in a magnetic field, are predicted from the theory, and compare favorably with existing measurements on YbMgGaO$_4$ and related materials.
Incommensurate spiral order is a common occurrence in frustrated magnetic insulators. Typically, all magnetic moments rotate uniformly, through the same wavevector. However the honeycomb iridates family Li2IrO3 shows an incommensurate order where spi rals on neighboring sublattices are counter-rotating, giving each moment a different local environment. Theoretically describing its spin dynamics has remained a challenge: the Kitaev interactions proposed to stabilize this state, which arise from strong spin-orbit effects, induce magnon umklapp scattering processes in spin-wave theory. Here we propose an approach via a (Klein) duality transformation into a conventional spiral of a frustrated Heisenberg model, allowing a direct derivation of the dynamical structure factor. We analyze both Kitaev and Dzyaloshinskii-Moriya based models, both of which can stabilize counterrotating spirals, but with different spin dynamics, and we propose experimental tests to identify the origin of counterrotation.
Topological Weyl semimetals (TWS) can be classified as type-I TWS, in which the density of states vanishes at the Weyl nodes, and type-II TWS where an electron and a hole pocket meet with finite density of states at the nodal energy. The dispersions of type-II Weyl nodes are tilted and break Lorentz invariance, allowing for physical properties distinct from those in a type-I TWS. We present minimal lattice models for both time-reversal-breaking and inversion-breaking type-II Weyl semimetals, and investigate their bulk properties and topological surface states. These lattice models capture the extended Fermi pockets and the connectivities of Fermi arcs. In addition to the Fermi arcs, which are topologically protected, we identify surface track states that arise out of the topological Fermi arc states at the transition from type-I to type-II with multiple Weyl nodes, and persist in the type-II TWS.
Strongly correlated analogues of topological insulators have been explored in systems with purely on-site symmetries, such as time-reversal or charge conservation. Here, we use recently developed tensor network tools to study a quantum state of inter acting bosons which is featureless in the bulk, but distinguished from an atomic insulator in that it exhibits entanglement which is protected by its spatial symmetries. These properties are encoded in a model many-body wavefunction that describes a fully symmetric insulator of bosons on the honeycomb lattice at half filling per site. While the resulting integer unit cell filling allows the state to bypass `no-go theorems that trigger fractionalization at fractional filling, it nevertheless has nontrivial entanglement, protected by symmetry. We demonstrate this by computing the boundary entanglement spectra, finding a gapless entanglement edge described by a conformal field theory as well as degeneracies protected by the non-trivial action of combined charge-conservation and spatial symmetries on the edge. Here, the tight-binding representation of the space group symmetries plays a particular role in allowing certain entanglement cuts that are not allowed on other lattices of the same symmetry, suggesting that the lattice representation can serve as an additional symmetry ingredient in protecting an interacting topological phase. Our results extend to a related insulating state of electrons, with short-ranged entanglement and no band insulator analogue.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا