ﻻ يوجد ملخص باللغة العربية
We study a driven, spin-orbit coupled fermionic system in a lattice at the resonant regime where the drive frequency equals the Hubbard repulsion, for which non-trivial constrained dynamics emerge at fast timescales. An effective density-dependent tunneling model is derived, and examined in the sparse filling regime in 1D. The system exhibits entropic self-localization, where while even numbers of atoms propagate ballistically, odd numbers form localized bound states induced by an effective attraction from a higher configurational entropy. These phenomena occur in the strong coupling limit where interactions only impose a constraint with no explicit Hamiltonian term. We show how the constrained dynamics lead to quantum few-body scars and map to an Anderson impurity model with an additional intriguing feature of non-reciprocal scattering. Connections to many-body scars and localization are also discussed.
The quantum Rabi model describes the interaction between a two-level quantum system and a single bosonic mode. We propose a method to perform a quantum simulation of the quantum Rabi model introducing a novel implementation of the two-level system, p
Time-periodic driving fields could endow a system with peculiar topological and transport features. In this work, we find dynamically controlled localization transitions and mobility edges in non-Hermitian quasicrystals via shaking the lattice period
We design a quantum battery made up of bosons or fermions in an ultracold atom setup, described by Fermi-Hubbard (FH) and Bose-Hubbard (BH) models respectively. We compare the performance of bosons as well as fermions and check which can act more eff
We discuss monitoring the time evolution of an analog quantum simulator via a quantum non-demolition (QND) coupling to an auxiliary `clock qubit. The QND variable of interest is the `energy of the quantum many-body system, represented by the Hamilton
The transport of excitations governs fundamental properties of matter. Particularly rich physics emerges in the interplay between disorder and environmental noise, even in small systems such as photosynthetic biomolecules. Counterintuitively, noise c