ﻻ يوجد ملخص باللغة العربية
Half-filled Landau levels admit the theoretically powerful fermion-vortex duality but longstanding puzzles remain in their experimental realization as $ u_T=1$ quantum Hall bilayers, further complicated by Zheng et als recent numerical discovery of an unknown phase at intermediate layer spacing. Here we propose that half-filled quantum Hall bilayers ($ u_T=1$) at intermediate values of the interlayer distance $d/ell_B$ enter a phase with textit{paired exciton condensation}. This phase shows signatures analogous to the condensate of interlayer excitons (electrons bound to opposite-layer holes) well-known for small $d$ but importantly condenses only exciton pairs. To study it theoretically we derive an effective Hamiltonian for bosonic excitons $b_k$ and show that the single-boson condensate suddenly vanishes for $d$ above a critical $d_{c1} approx 0.95 l_B$. The nonzero condensation fraction $n_0=langle b(0) rangle ^2$ at $d_{c1}$ suggests that the phase stiffness remains nonzero for a range of $d>d_{c1}$ via an intermediate phase of paired-exciton condensation, exhibiting $langle bb rangle eq 0$ while $langle b rangle =0$. Motivated by these results we derive a $K$-matrix description of the paired exciton condensates topological properties from composite boson theory. The elementary charged excitation is a half meron with $frac{1}{4}$ charge and fractional self-statistics $theta_s=frac{pi}{16}$. Finally we argue for an equivalent description via the $d=infty$ limit through topological charge-$4e$ pairing of composite fermions. We suggest graphene double layers should access this phase and propose various experimental signatures, including an Ising transition $T_{Ising}$ below the Berezinskii-Kosterlitz-Thouless transition $T_{BKT}$ at $d sim d_{c1}$.
We present a theory of the isotropic-nematic quantum phase transition in the composite Fermi liquid arising in half-filled Landau levels. We show that the quantum phase transition between the isotropic and the nematic phase is triggered by an attract
Nonabelian anyons offer the prospect of storing quantum information in a topological qubit protected from decoherence, with the degree of protection determined by the energy gap separating the topological vacuum from its low lying excitations. Origin
The half filled Landau level is expected to be approximately particle-hole symmetric, which requires an extension of the Halperin-Lee-Read (HLR) theory of the compressible state observed at this filling. Recent work indicates that, when particle-hole
The properties of the isotropic incompressible $ u=5/2$ fractional quantum Hall (FQH) state are described by a paired state of composite fermions in zero (effective) magnetic field, with a uniform $p_x+ip_y$ pairing order parameter, which is a non-Ab
Interlayer tunneling measurements in the strongly correlated bilayer quantized Hall phase at $ u_T=1$ are reported. The maximum, or critical current for tunneling at $ u_T=1$, is shown to be a well-defined global property of the coherent phase, insen