ترغب بنشر مسار تعليمي؟ اضغط هنا

Since Bells theorem, it is known that the concept of local realism fails to explain quantum phenomena. Indeed, the violation of a Bell inequality has become a synonym of the incompatibility of quantum theory with our classical notion of cause and eff ect. As recently discovered, however, the instrumental scenario -- a tool of central importance in causal inference -- allows for signatures of nonclassicality that do not hinge on this paradigm. If, instead of relying on observational data only, we can also intervene in our experimental setup, quantum correlations can violate classical bounds on the causal influence even in scenarios where no violation of a Bell inequality is ever possible. That is, through interventions, we can witness the quantum behaviour of a system that would look classical otherwise. Using a photonic setup -- faithfully implementing the instrumental causal structure and allowing to switch between the observational and interventional modes in a run to run basis -- we experimentally observe this new witness of nonclassicality for the first time. In parallel, we also test quantum bounds for the causal influence, showing that they provide a reliable tool for quantum causal modelling.
Self-testing is a method of quantum state and measurement estimation that does not rely on assumptions about the inner working of the used devices. Its experimental realization has been limited to sources producing single quantum states so far. In th is work, we experimentally implement two significant building blocks of a quantum network involving two independent sources, i.e. a parallel configuration in which two parties share two copies of a state, and a tripartite configuration where a central node shares two independent states with peripheral nodes. Then, by extending previous self-testing techniques we provide device-independent lower bounds on the fidelity between the generated states and an ideal state made by the tensor product of two maximally entangled two-qubit states. Given its scalability and versatility, this technique can find application in the certification of larger networks of different topologies, for quantum communication and cryptography tasks and randomness generation protocols.
Instrumental variables allow the estimation of cause and effect relations even in presence of unobserved latent factors, thus providing a powerful tool for any science wherein causal inference plays an important role. More recently, the instrumental scenario has also attracted increasing attention in quantum physics, since it is related to the seminal Bells theorem and in fact allows the detection of even stronger quantum effects, thus enhancing our current capabilities to process information and becoming a valuable tool in quantum cryptography. In this work, we further explore this bridge between causality and quantum theory and apply a technique, originally developed in the field of quantum foundations, to express the constraints implied by causal relations in the language of graph theory. This new approach can be applied to any causal model containing a latent variable. Here, by focusing on the instrumental scenario, it allows us to easily reproduce known results as well as obtain new ones and gain new insights on the connections and differences between the instrumental and the Bell scenarios.
The intrinsic random nature of quantum physics offers novel tools for the generation of random numbers, a central challenge for a plethora of fields. Bell non-local correlations obtained by measurements on entangled states allow for the generation of bit strings whose randomness is guaranteed in a device-independent manner, i.e. without assumptions on the measurement and state-generation devices. Here, we generate this strong form of certified randomness on a new platform: the so-called instrumental scenario, which is central to the field of causal inference. First, we theoretically show that certified random bits, private against general quantum adversaries, can be extracted exploiting device-independent quantum instrumental-inequality violations. To that end, we adapt techniques previously developed for the Bell scenario. Then, we experimentally implement the corresponding randomness-generation protocol using entangled photons and active feed-forward of information. Moreover, we show that, for low levels of noise, our protocol offers an advantage over the simplest Bell-nonlocality protocol based on the Clauser-Horn-Shimony-Holt inequality.
Inferring causal relations from experimental observations is of primal importance in science. Instrumental tests provide an essential tool for that aim, as they allow one to estimate causal dependencies even in the presence of unobserved common cause s. In view of Bells theorem, which implies that quantum mechanics is incompatible with our most basic notions of causality, it is of utmost importance to understand whether and how paradigmatic causal tools obtained in a classical setting can be carried over to the quantum realm. Here we show that quantum effects imply radically different predictions in the instrumental scenario. Among other results, we show that an instrumental test can be violated by entangled quantum states. Furthermore, we demonstrate such violation using a photonic set-up with active feed-forward of information, thus providing an experimental proof of this new form of non-classical behaviour. Our findings have fundamental implications in causal inference and may also lead to new applications of quantum technologies.
Quantum tomography is currently the mainly employed method to assess the information of a system and therefore plays a fundamental role when trying to characterize the action of a particular channel. Nonetheless, quantum tomography requires the trust that the devices used in the laboratory perform state generation and measurements correctly. This work is based on the theoretical framework for the device-independent inference of quantum channels that was recently developed and experimentally implemented with superconducting qubits in [DallArno, Buscemi, Vedral, arXiv:1805.01159] and [DallArno, Brandsen, Buscemi, PRSA 473, 20160721 (2017)]. Here, we present a complete experimental test on a photonic setup of two device-independent quantum channels falsification and characterization protocols to analyze, validate, and enhance the results obtained by conventional quantum process tomography. This framework has fundamental implications in quantum information processing and may also lead to the development of new methods removing the assumptions typically taken for granted in all the previous protocols.
Structured photons are nowadays an interesting resource in classical and quantum optics due to the richness of properties they show under propagation, focusing and in their interaction with matter. Vectorial modes of light in particular, a class of m odes where the polarization varies across the beam profile, have already been used in several areas ranging from microscopy to quantum information. One of the key ingredients needed to exploit the full potential of complex light in quantum domain is the control of quantum interference, a crucial resource in fields like quantum communication, sensing and metrology. Here we report a tunable photon-photon interference between vectorial modes of light. We demonstrate how a properly designed spin-orbit device can be used to control quantum interference between vectorial modes of light by simply adjusting the device parameters and no need of interferometric setups. We believe our result can find applications in fundamental research and quantum technologies based on structured light by providing a new tool to control quantum interference in a compact, efficient and robust way.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا