ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental robust self-testing of the state generated by a quantum network

227   0   0.0 ( 0 )
 نشر من قبل Fabio Sciarrino
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Self-testing is a method of quantum state and measurement estimation that does not rely on assumptions about the inner working of the used devices. Its experimental realization has been limited to sources producing single quantum states so far. In this work, we experimentally implement two significant building blocks of a quantum network involving two independent sources, i.e. a parallel configuration in which two parties share two copies of a state, and a tripartite configuration where a central node shares two independent states with peripheral nodes. Then, by extending previous self-testing techniques we provide device-independent lower bounds on the fidelity between the generated states and an ideal state made by the tensor product of two maximally entangled two-qubit states. Given its scalability and versatility, this technique can find application in the certification of larger networks of different topologies, for quantum communication and cryptography tasks and randomness generation protocols.

قيم البحث

اقرأ أيضاً

What gravitational field is generated by a massive quantum system in a spatial superposition? Despite decades of intensive theoretical and experimental research, we still do not know the answer. On the experimental side, the difficulty lies in the fa ct that gravity is weak and requires large masses to be detectable. However, it becomes increasingly difficult to generate spatial quantum superpositions for increasingly large masses, in light of the stronger environmental effects on such systems. Clearly, a delicate balance between the need for strong gravitational effects and weak decoherence should be found. We show that such a trade off could be achieved in an optomechanics scenario that allows to determine whether the gravitational field generated by a quantum system in a spatial superposition is in a coherent superposition or not. We estimate the magnitude of the effect and show that it offers perspectives for observability.
The need of discriminating between different quantum states is a fundamental issue in Quantum Information and Communication. The actual realization of generally optimal strategies in this task is often limited by the need of supplemental resources an d very complex receivers. We have experimentally implemented two discrimination schemes in a minimum-error scenario based on a receiver featured by a network structure and a dynamical processing of information. The first protocol implemented in our experiment, directly inspired to a recent theoretical proposal, achieves binary optimal discrimination, while the second one provides a novel approach to multi-state quantum discrimination, relying on the dynamical features of the network-like receiver. This strategy exploits the arrival time degree of freedom as an encoding variable, achieving optimal results, without the need for supplemental systems or devices. Our results further reveal the potential of dynamical approaches to Quantum State Discrimination tasks, providing a possible starting point for efficient alternatives to current experimental strategies.
The network structure offers in principle the possibility for novel forms of quantum nonlocal correlations, that are proper to networks and cannot be traced back to standard quantum Bell nonlocality. Here we define a notion of genuine network quantum nonlocality. Our approach is operational and views standard quantum nonlocality as a resource for producing correlations in networks. We show several examples of correlations that are genuine network nonlocal, considering the so-called bilocality network of entanglement swapping. In particular, we present an example of quantum self-testing which relies on the network structure; the considered correlations are non-bilocal, but are local according to the usual definition of Bell locality.
397 - Dian Wu , Qi Zhao , Xue-Mei Gu 2021
Quantum self-testing is a device-independent way to certify quantum states and measurements using only the input-output statistics, with minimal assumptions about the quantum devices. Due to the high demand on tolerable noise, however, experimental s elf-testing was limited to two-photon systems. Here, we demonstrate the first robust self-testing for multi-particle quantum entanglement. We prepare two examples of four-photon graph states, the Greenberger-Horne-Zeilinger (GHZ) states with a fidelity of 0.957(2) and the linear cluster states with a fidelity of 0.945(2). Based on the observed input-output statistics, we certify the genuine four-photon entanglement and further estimate their qualities with respect to realistic noise in a device-independent manner.
Self-testing is a method to certify devices from the result of a Bell test. Although examples of noise tolerant self-testing are known, it is not clear how to deal efficiently with a finite number of experimental trials to certify the average quality of a device without assuming that it behaves identically at each run. As a result, existing self-testing results with finite statistics have been limited to guarantee the proper working of a device in just one of all experimental trials, thereby limiting their practical applicability. We here derive a method to certify through self-testing that a device produces states on average close to a Bell state without assumption on the actual state at each run. Thus the method is free of the I.I.D. (independent and identically distributed) assumption. Applying this new analysis on the data from a recent loophole-free Bell experiment, we demonstrate the successful distribution of Bell states over 398 meters with an average fidelity of $geq$55.50% at a confidence level of 99%. Being based on a Bell test free of detection and locality loopholes, our certification is evidently device-independent, that is, it does not rely on trust in the devices or knowledge of how the devices work. This guarantees that our link can be integrated in a quantum network for performing long-distance quantum communications with security guarantees that are independent of the details of the actual implementation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا