ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental device-independent tests of quantum channels

278   0   0.0 ( 0 )
 نشر من قبل Fabio Sciarrino
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum tomography is currently the mainly employed method to assess the information of a system and therefore plays a fundamental role when trying to characterize the action of a particular channel. Nonetheless, quantum tomography requires the trust that the devices used in the laboratory perform state generation and measurements correctly. This work is based on the theoretical framework for the device-independent inference of quantum channels that was recently developed and experimentally implemented with superconducting qubits in [DallArno, Buscemi, Vedral, arXiv:1805.01159] and [DallArno, Brandsen, Buscemi, PRSA 473, 20160721 (2017)]. Here, we present a complete experimental test on a photonic setup of two device-independent quantum channels falsification and characterization protocols to analyze, validate, and enhance the results obtained by conventional quantum process tomography. This framework has fundamental implications in quantum information processing and may also lead to the development of new methods removing the assumptions typically taken for granted in all the previous protocols.


قيم البحث

اقرأ أيضاً

In this paper, we report an experiment about the device-independent tests of classical and quantum entropy based on a recent proposal [Phys. Rev. Lett. 115, 110501 (2015)], in which the states are encoded on the polarization of a biphoton system and measured by the state tomography technology. We also theoretically obtained the minimal quantum entropy for three widely used linear dimension witnesses. The experimental results agree well with the theoretical analysis, demonstrating that lower entropy is needed in quantum systems than that in classical systems under given values of the dimension witness.
Bell nonlocality between distant quantum systems---i.e., joint correlations which violate a Bell inequality---can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure p rotocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell nonlocality requires high detection efficiencies, and is not robust to the typical transmission losses that occur in long distance applications. In contrast, quantum steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. We present device-independent steering protocols that remove this need for trust, even when Bell nonlocality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.
We show that the entropy of a message can be tested in a device-independent way. Specifically, we consider a prepare-and-measure scenario with classical or quantum communication, and develop two different methods for placing lower bounds on the commu nication entropy, given observable data. The first method is based on the framework of causal inference networks. The second technique, based on convex optimization, shows that quantum communication provides an advantage over classical, in the sense of requiring a lower entropy to reproduce given data. These ideas may serve as a basis for novel applications in device-independent quantum information processing.
171 - Hui Liu , Wenyuan Wang , Kejin Wei 2018
Measurement-device-independent quantum key distribution (MDI-QKD) can eliminate all detector side channels and it is practical with current technology. Previous implementations of MDI-QKD all use two symmetric channels with similar losses. However, t he secret key rate is severely limited when different channels have different losses. Here we report the results of the first high-rate MDI-QKD experiment over $asymmetric$ channels. By using the recent 7-intensity optimization approach, we demonstrate $>$10x higher key rate than previous best-known protocols for MDI-QKD in the situation of large channel asymmetry, and extend the secure transmission distance by more than 20-50 km in standard telecom fiber. The results have moved MDI-QKD towards widespread applications in practical network settings, where the channel losses are asymmetric and user nodes could be dynamically added or deleted.
Applications of randomness such as private key generation and public randomness beacons require small blocks of certified random bits on demand. Device-independent quantum random number generators can produce such random bits, but existing quantum-pr oof protocols and loophole-free implementations suffer from high latency, requiring many hours to produce any random bits. We demonstrate device-independent quantum randomness generation from a loophole-free Bell test with a more efficient quantum-proof protocol, obtaining multiple blocks of $512$ bits with an average experiment time of less than $5$ min per block and with a certified error bounded by $2^{-64}approx 5.42times 10^{-20}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا