ترغب بنشر مسار تعليمي؟ اضغط هنا

Majorana bound states appearing in 1-D $p$-wave superconductor ($cal{PWS}$) are found to result in exotic quantum holonomy of both eigenvalues and the eigenstates. Induced by a degeneracy hidden in complex Bloch vector space, Majorana states are iden tified with a pair of exceptional point ($cal{EP}$) singularities. Characterized by a collapse of the vector space, these singularities are defects in Hilbert space that lead to M$ddot{rm o}$bius strip-like structure of the eigenspace and singular quantum metric. The topological phase transition in the language of $cal{EP}$ is marked by one of the two exception point singularity degenerating to a degeneracy point with non singular quantum metric. This may provide an elegant and useful framework to characterize the topological aspect of Majorana fermions and the topological phase transition.
Recent theoretical work on time-periodically kicked Hofstadter model found robust counter-propagating edge modes. It remains unclear how ubiquitously such anomalous modes can appear, and what dictates their robustness against disorder. Here we shed f urther light on the nature of these modes by analyzing a simple type of periodic driving where the hopping along one spatial direction is modulated sinusoidally with time while the hopping along the other spatial direction is kept constant. We obtain the phase diagram for the quasienergy spectrum at flux 1/3 as the driving frequency $omega$ and the hopping anisotropy are varied. A series of topologically distinct phases with counter-propagating edge modes appear due to the harmonic driving, similar to the case of a periodically kicked system studied earlier. We analyze the time dependence of the pair of Floquet edge states localized at the same edge, and compare their Fourier components in the frequency domain. In the limit of small modulation, one of the Floquet edge mode within the pair can be viewed as the edge mode originally living in the other energy gap shifted in quasienergy by $hbar omega$, i.e., by absorption or emission of a photon of frequency $omega$. Our result suggests that counter-propagating Floquet edge modes are generic features of periodically driven integer quantum Hall systems, and not tied to any particular driving protocol. It also suggests that the Floquet edge modes would remain robust to any static perturbations that do not destroy the chiral edge modes of static quantum Hall states.
A periodically driven quantum Hall system in a fixed magnetic field is found to exhibit a series of phases featuring anomalous edge modes with the wrong chirality. This leads to pairs of counter-propagating chiral edge modes at each edge, in sharp co ntrast to stationary quantum Hall systems. We show that the pair of Floquet edge modes are protected by the chiral (sublattice) symmetry, and that they are robust against static disorder. The existence of distinctive phases with the same Chern and winding numbers but very different edge state spectra points to the important role played by symmetry in classifying topological properties of driven systems. We further explore the evolution of the edge states with driving using a simplified model, and discuss their experimental signatures.
Mean-field dynamics of strongly interacting bosons described by hard core bosons with nearest-neighbor attraction has been shown to support two species of solitons: one of Gross-Pitaevskii (GP-type) where the condensate fraction remains dark and a no vel non-Gross-Pitaevskii-type (non-GP-type) characterized by brightening of the condensate fraction. Here we study the effects of quantum fluctuations on these solitons using the adaptive time-dependent density matrix renormalization group method, which takes into account the effect of strong correlations. We use local observables as the density, condensate density and correlation functions as well as the entanglement entropy to characterize the stability of the initial states. We find both species of solitons to be stable under quantum evolution for a finite duration, their tolerance to quantum fluctuations being enhanced as the width of the soliton increases. We describe possible experimental realizations in atomic Bose Einstein Condensates, polarized degenerate Fermi gases, and in systems of polar molecules on optical lattices.
Finite size scalings of the momentum distribution and noise correlations are performed to study Mott insulator, Bose glass, and superfluid quantum phases in hard-core bosons (HCBs) subjected to quasi-periodic disorder. The exponents of the correlatio n functions at the Superfluid to Bose glass (SF-BG) transition are found to be approximately one half of the ones that characterizes the superfluid phase. The derivatives of the peak intensities of the correlation functions with respect to quasiperiodic disorder are shown to diverge at the SF-BG critical point. This behavior does not occur in the corresponding free fermion system, which also exhibits an Anderson-like transition at the same critical point, and thus provides a unique experimental tool to locate the phase transition in interacting bosonic systems. We also report on the absence of primary sublattice peaks in the momentum distribution of the superfluid phase for special fillings.
Ultracold atom research presents many avenues to study problems at the forefront of physics. Due to their unprecedented controllability, these systems are ideally suited to explore new exotic states of matter, which is one of the key driving elements of the condensed matter research. One such topic of considerable importance is topological insulators, materials that are insulating in the interior but conduct along the edges. Quantum Hall and its close cousin Quantum Spin Hall states belong to the family of these exotic states and are the subject of this chapter.
We show that entanglement monotones can characterize the pronounced enhancement of entanglement at a quantum phase transition if they are sensitive to long-range high order correlations. These monotones are found to develop a sharp peak at the critic al point and to exhibit universal scaling. We demonstrate that similar features are shared by noise correlations and verify that these experimentally accessible quantities indeed encode entanglement information and probe separability.
Motivated by the possibility of creating non-Abelian fields using cold atoms in optical lattices, we explore the richness and complexity of non-interacting two-dimensional electron gases (2DEGs) in a lattice, subjected to such fields. In the continuu m limit, a non-Abelian system characterized by a two-component magnetic flux describes a harmonic oscillator existing in two different charge states (mimicking a particle-hole pair) where the coupling between the states is determined by the non-Abelian parameter, namely the difference between the two components of the magnetic flux. A key feature of the non-Abelian system is a splitting of the Landau energy levels, which broaden into bands, as the spectrum depends explicitly on the transverse momentum. These Landau bands result in a coarse-grained moth, a continuum version of the generalized Hofstadter butterfly. Furthermore, the bands overlap, leading to effective relativistic effects. Importantly, similar features also characterize the corresponding two-dimensional lattice problem when at least one of the components of the magnetic flux is an irrational number. The lattice system with two competing magnetic fluxes penetrating the unit cell provides a rich environment in which to study localization phenomena. Some unique aspects of the transport properties of the non-Abelian system are the possibility of inducing localization by varying the quasimomentum, and the absence of localization of certain zero-energy states exhibiting a linear energy-momentum relation. Furthermore, non-Abelian systems provide an interesting localization scenario where the localization transition is accompanied by a transition from relativistic to non-relativistic theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا