ترغب بنشر مسار تعليمي؟ اضغط هنا

Majorana fermions: Anholonomy of bound states

169   0   0.0 ( 0 )
 نشر من قبل Sourin Das
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Majorana bound states appearing in 1-D $p$-wave superconductor ($cal{PWS}$) are found to result in exotic quantum holonomy of both eigenvalues and the eigenstates. Induced by a degeneracy hidden in complex Bloch vector space, Majorana states are identified with a pair of exceptional point ($cal{EP}$) singularities. Characterized by a collapse of the vector space, these singularities are defects in Hilbert space that lead to M$ddot{rm o}$bius strip-like structure of the eigenspace and singular quantum metric. The topological phase transition in the language of $cal{EP}$ is marked by one of the two exception point singularity degenerating to a degeneracy point with non singular quantum metric. This may provide an elegant and useful framework to characterize the topological aspect of Majorana fermions and the topological phase transition.



قيم البحث

اقرأ أيضاً

Reading out Majorana bound states (MBSs) is essential both to verify their non-Abelian property and to realize topological quantum computation. Here, we construct a protocol to measure the parity of two MBSs in a Majorana island coupled to double qua ntum dot (DQD). The parity information is mapped to the charge state of the DQD through Landau-Zener transition. The operation needed is sweeping the bias of the DQD, which is followed by charge sensing. In the case without fine-tuning, a single run of sweep-and-detection implement a weak measurement of the parity. We find that in general a sequence of about ten runs would completely project a superposition state to either parity, and the charge detection in each run records how the state of MBSs collapses step by step. Remarkably, this readout protocol is of non-demolition and robust to low frequency charge fluctuation.
We theoretically investigate a topological Kitaev chain connected to a double quantum-dot (QD) setup hybridized with metallic leads. In this system we observe the emergence of two striking phenomena: (i) a decrypted Majorana fermion (MF) qubit record ed over a single QD, which is detectable by means of conductance measurements due to the asymmetrical MF-qubit leaked state into the QDs; (ii) an encrypted qubit recorded in both QDs when the leakage is symmetrical. In such a regime, we have a cryptographylike manifestation, since the MF qubit becomes bound states in the continuum, which is not detectable in conductance experiments.
Quantum wires subject to the combined action of spin-orbit and Zeeman coupling in the presence of emph{s}-wave pairing potentials (superconducting proximity effect in semiconductors or superfluidity in cold atoms) are one of the most promising system s for the developing of topological phases hosting Majorana fermions. The breaking of time-reversal symmetry is essential for the appearance of unpaired Majorana fermions. By implementing a emph{time-dependent} spin rotation, we show that the standard magnetostatic model maps into a emph{non-magnetic} one where the breaking of time-reversal symmetry is guaranteed by a periodical change of the spin-orbit coupling axis as a function of time. This suggests the possibility of developing the topological superconducting state of matter driven by external forces in the absence of magnetic fields and magnetic elements. From a practical viewpoint, the scheme avoids the disadvantages of conjugating magnetism and superconductivity, even though the need of a high-frequency driving of spin-orbit coupling may represent a technological challenge. We describe the basic properties of this Floquet system by showing that finite samples host unpaired Majorana fermions at their edges despite the fact that the bulk Floquet quasienergies are gapless and that the Hamiltonian at each instant of time preserves time-reversal symmetry. Remarkably, we identify the mean energy of the Floquet states as a topological indicator. We additionally show that the localized Floquet Majorana fermions are robust under local perturbations. Our results are supported by complementary numerical Floquet simulations.
We show theoretically that in the generic finite chemical potential situation, the clean superconducting spin-orbit-coupled nanowire has two distinct nontopological regimes as a function of Zeeman splitting (below the topological quantum phase transi tion): one is characterized by finite-energy in-gap Andreev bound states, while the other has only extended bulk states. The Andreev bound state regime is characterized by strong features in the tunneling spectra creating a gap closure signature, but no gap reopening signature should be apparent above the topological quantum phase transition, in agreement with most recent experimental observations. The gap closure feature is actually the coming together of the Andreev bound states at high chemical potential rather than a simple trivial gap of extended bulk states closing at the transition. Our theoretical finding establishes the generic intrinsic Andreev bound states on the trivial side of the topological quantum phase transition as the main contributors to the tunneling conductance spectra, providing a generic interpretation of existing experiments in clean Majorana nanowires. Our work also explains why experimental tunnel conductance spectra generically have gap closing features below the topological quantum phase transition, but no gap opening features above it.
137 - D. Chevallier , P. Simon , C. Bena 2013
We study the proximity effect in a topological nanowire tunnel coupled to an s-wave superconducting substrate. We use a general Greens function approach that allows us to study the evolution of the Andreev bound states in the wire into Majorana fermi ons. We show that the strength of the tunnel coupling induces a topological transition in which the Majorana fermionic states can be destroyed when the coupling is very strong. Moreover, we provide a phenomenologial study of the effects of disorder in the superconductor on the formation of Majorana fermions. We note a non-trivial effect of a quasiparticle broadening term which can take the wire from a topological into a non-topological phase in certain ranges of parameters. Our results have also direct consequences for a nanowire coupled to an inhomogenous superconductor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا