ترغب بنشر مسار تعليمي؟ اضغط هنا

We compute statistical properties of the stochastic entropy production associated with the nonstationary transport of heat through a system coupled to a time dependent nonisothermal heat bath. We study the 1-d stochastic evolution of a bound particle in such an environment by solving the appropriate Langevin equation numerically, and by using an approximate analytic solution to the Kramers equation to determine the behaviour of an ensemble of systems. We express the total stochastic entropy production in terms of a relaxational or nonadiabatic part together with two components of housekeeping entropy production and determine the distributions for each, demonstrating the importance of all three contributions for this system. We compare the results with an approximate analytic model of the mean behaviour and we further demonstrate that the total entropy production and the relaxational component approximately satisfy detailed fluctuation relations for certain time intervals. Finally, we comment on the resemblance between the procedure for solving the Kramers equation and a constrained extremisation, with respect to the probability density function, of the spatial density of the mean rate of production of stochastic entropy.
The stochastic entropy generated during the evolution of a system interacting with an environment may be separated into three components, but only two of these have a non-negative mean. The third component of entropy production is associated with the relaxation of the system probability distribution towards a stationary state and with nonequilibrium constraints within the dynamics that break detailed balance. It exists when at least some of the coordinates of the system phase space change sign under time reversal, and when the stationary state is asymmetric in these coordinates. We illustrate the various components of entropy production, both in detail for particular trajectories and in the mean, using simple systems defined on a discrete phase space of spatial and velocity coordinates. These models capture features of the drift and diffusion of a particle in a physical system, including the processes of injection and removal and the effect of a temperature gradient. The examples demonstrate how entropy production in stochastic thermodynamics depends on the detail that is included in a model of the dynamics of a process. Entropy production from such a perspective is a measure of the failure of such models to meet Loschmidts expectation of dynamic reversibility.
The total entropy production and its three constituent components are described both as fluctuating trajectory-dependent quantities and as averaged contributions in the context of the continuous Markovian dynamics, described by stochastic differentia l equations with multiplicative noise, of systems with both odd and even coordinates with respect to time reversal, such as dynamics in full phase space. Two of these constituent quantities obey integral fluctuation theorems and are thus rigorously positive in the mean by Jensens inequality. The third, however, is not and furthermore cannot be uniquely associated with irreversibility arising from relaxation, nor with the breakage of detailed balance brought about by non-equilibrium constraints. The properties of the various contributions to total entropy production are explored through the consideration of two examples: steady state heat conduction due to a temperature gradient, and transitions between stationary states of drift-diffusion on a ring, both in the context of the full phase space dynamics of a single Brownian particle.
The fluctuation relations have received considerable attention since their emergence and development in the 1990s. We present a summary of the main results and suggest ways to interpret this material. Starting with a consideration of the under-determ ined time evolution of a simple open system, formulated using continuous Markovian stochastic dy- namics, an expression for the entropy generated over a time interval is developed in terms of the probability of observing a trajectory associated with a prescribed driving protocol, and the probability of its time-reverse. This forms the basis for a general theoretical description of non-equilibrium thermodynamic pro- cesses. Having established a connection between entropy production and an inequivalence in probability for forward and time-reversed events, we proceed in the manner of Sekimoto and Seifert, in particular, to derive results in stochastic thermodynamics: a description of the evolution of a system between equilibrium states that ties in with well-established thermodynamic expectations. We derive fluctuation relations, state conditions for their validity, and illustrate their op- eration in some simple cases, thereby providing some introductory insight into the various celebrated symmetry relations that have emerged in this field.
The total entropy production of stochastic systems can be divided into three quantities. The first corresponds to the excess heat, whilst the second two comprise the house-keeping heat. We denote these two components the transient and generalised hou se-keeping heat and we obtain an integral fluctuation theorem for the latter, valid for all Markovian stochastic dynamics. A previously reported formalism is obtained when the stationary probability distribution is symmetric for all variables that are odd under time reversal which restricts consideration of directional variables such as velocity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا