ترغب بنشر مسار تعليمي؟ اضغط هنا

163 - L. Amati 2013
Gamma-Ray Bursts (GRBs) are the most powerful cosmic explosions since the Big Bang, and thus act as signposts throughout the distant Universe. Over the last 2 decades, these ultra-luminous cosmological explosions have been transformed from a mere cur iosity to essential tools for the study of high-redshift stars and galaxies, early structure formation and the evolution of chemical elements. In the future, GRBs will likely provide a powerful probe of the epoch of reionisation of the Universe, constrain the properties of the first generation of stars, and play an important role in the revolution of multi-messenger astronomy by associating neutrinos or gravitational wave (GW) signals with GRBs. Here, we describe the next steps needed to advance the GRB field, as well as the potential of GRBs for studying the Early Universe and their role in the up-coming multi-messenger revolution.
121 - R. Landi 2013
With respect to the recent INTEGRAL/IBIS 9-year Galactic Hard X-ray Survey (Krivonos et al. 2012), we use archival Swift/XRT observations in conjunction with multi-wavelength information to discuss the counterparts of a sample of newly discovered obj ects. The X-ray telescope (XRT, 0.3-10 keV) on board Swift, thanks to its few arcseconds source location accuracy, has been proven to be a powerful tool with which the X-ray counterparts to these IBIS sources can be searched for and studied. In this work, we present the outcome of this analysis by discussing four objects (SWIFT J0958.0-4208, SWIFT J1508.6-4953, IGR J17157-5449, and IGR J22534+6243) having either X-ray data of sufficient quality to perform a reliable spectral analysis or having interesting multiwaveband properties. We find that SWIFT J1508.6-4953 is most likely a Blazar, while IGR J22534+6243 is probably a HMXB. The remaining two objects may be contaminated by nearby X-ray sources and their class can be inferred only by means of optical follow-up observations of all likely counterparts.
Hard X-ray surveys are an important tool for the study of active galactic nuclei (AGN): they provide almost an unbiased view of absorption in the extragalactic population, allow the study of spectral features such as reflection and high energy cut-of f which would otherwise be unexplored and favour the discovery of some blazars at high redshift. Here, we present the absorption properties of a large sample of INTEGRAL detected AGN, including an update on the fraction of Compton thick objects. For a sub-sample of 87 sources, which represent a complete set of bright AGN, we will discuss the hard X-ray (20-100 keV) spectral properties, also in conjunction with Swift/BAT 58 month data, providing information on BAT/IBIS cross-calibration constant, average spectral shape and spectral complexity. For this complete sample, we will also present broad-band data using soft X-ray observations, in order to explore the complexity of AGN spectra both at low and high energies and to highlight the variety of shapes. Future prospects for AGN studies with INTEGRAL will also be outlined.
79 - L.A. Popa 2009
We make a more general determination of the inflationary observables in the standard 4-D and 5-D single-field inflationary scenarios, by the exact reconstruction of the dynamics of the inflation potential during the observable inflation with minimal number of assumptions: the computation does not assume the slow-roll approximation and is valid in all regimes if the field is monotonically rolling down its potential. Making use of the {em Hamilton-Jacobi} formalism developed for the 5-D single-field inflation model,we compute the scale dependence of the amplitudes of the scalarand tensor perturbations by integrating the exact mode equation. We analyze the implications of the theoretical uncertainty in the determination of the reheating temperature after inflation on the observable predictions of inflation and evaluate its impact on the degeneracy of the standard inflation consistency relation.
215 - M. Molina 2008
Starting from a complete sample of type I AGN observed by INTEGRAL in the 20-40 keV band, we have selected a set of 8 AGN which can be classified as radio loud objects according to their 1.4 GHz power density, radio to hard X-ray flux flux density ra tio and radio morphology. The sample contains 6 Broad Line Radio Galaxies and 2 candidate ones. Most of the objects in our sample display a double lobe morphology, both on small and large scales. For all the objects, we present broad-band (1-110 keV) spectral analysis using INTEGRAL observations together with archival XMM-Newton, Chandra, Swift/XRT and Swift/BAT data. We constrain the primary continuum (photon index and cut-off energy), intrinsic absorption and reprocessing features (iron line and reflection) in most of the objects. The sources analysed here show remarkable similarities to radio quiet type 1 AGN with respect to most of the parameters analysed; we only find marginal evidence for weaker reprocessing features in our objects compared to their radio quiet counterparts. Similarly we do not find any correlation between the spectral parameters studied and the source core dominance or radio to 20-100 keV flux density ratios, suggesting that what makes our objects radio loud has no effect on their high energy characteristics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا