ترغب بنشر مسار تعليمي؟ اضغط هنا

Review on Active Galactic Nuclei at hard X-ray energies

124   0   0.0 ( 0 )
 نشر من قبل Manuela Molina
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Loredana Bassani




اسأل ChatGPT حول البحث

Hard X-ray surveys are an important tool for the study of active galactic nuclei (AGN): they provide almost an unbiased view of absorption in the extragalactic population, allow the study of spectral features such as reflection and high energy cut-off which would otherwise be unexplored and favour the discovery of some blazars at high redshift. Here, we present the absorption properties of a large sample of INTEGRAL detected AGN, including an update on the fraction of Compton thick objects. For a sub-sample of 87 sources, which represent a complete set of bright AGN, we will discuss the hard X-ray (20-100 keV) spectral properties, also in conjunction with Swift/BAT 58 month data, providing information on BAT/IBIS cross-calibration constant, average spectral shape and spectral complexity. For this complete sample, we will also present broad-band data using soft X-ray observations, in order to explore the complexity of AGN spectra both at low and high energies and to highlight the variety of shapes. Future prospects for AGN studies with INTEGRAL will also be outlined.



قيم البحث

اقرأ أيضاً

Active Galactic Nuclei can be copious extragalactic emitters of MeV-GeV-TeV gamma rays, a phenomenon linked to the presence of relativistic jets powered by a super-massive black hole in the center of the host galaxy. Most of gamma-ray emitting active galactic nuclei, with more than 1500 known at GeV energies, and more than 60 at TeV energies, are called blazars. The standard blazar paradigm features a jet of relativistic magnetized plasma ejected from the neighborhood of a spinning and accreting super-massive black hole, close to the observer direction. Two classes of blazars are distinguished from observations: the flat-spectrum radio-quasar class (FSRQ) is characterized by strong external radiation fields, emission of broad optical lines, and dust tori. The BL Lac class (from the name of one of its members, BL Lacertae) corresponds to weaker advection-dominated flows with gamma-ray spectra dominated by the inverse Compton effect on synchrotron photons. This paradigm has been very successful for modeling the broadband spectral energy distributions of blazars. However, many fundamental issues remain, including the role of hadronic processes and the rapid variability of those BL Lac objects whose synchrotron spectrum peaks at UV or X-ray frequencies. A class of gamma-ray--emitting radio galaxies, which are thought to be the misaligned counterparts of blazars, has emerged from the results of the Fermi-Large Area Telescope and of ground-based Cherenkov telescopes. Blazars and their misaligned ounterparts make up most of the >100 MeV extragalactic gamma ray background (EGB), and are uspected of being the sources of ultra-high energy cosmic rays. The future Cherenkov Telescope Array, in synergy with the Fermi-Large Area Telescope and a wide range of telescopes in space and on he ground, will write the next chapter of blazar physics.
We present a broadband X-ray spectral analysis of the M51 system, including the dual active galactic nuclei (AGN) and several off-nuclear point sources. Using a deep observation by NuSTAR, new high-resolution coverage of M51b by Chandra, and the late st X-ray torus models, we measure the intrinsic X-ray luminosities of the AGN in these galaxies. The AGN of M51a is found to be Compton thick, and both AGN have very low accretion rates ($lambda_{rm Edd} <10^{-4}$). The latter is surprising considering that the galaxies of M51 are in the process of merging, which is generally predicted to enhance nuclear activity. We find that the covering factor of the obscuring material in M51a is $0.26 pm 0.03$, consistent with the local AGN obscured fraction at $L_{rm X}sim 10^{40}$ erg s$^{-1}$. The substantial obscuring column does not support theories that the torus, presumed responsible for the obscuration, disappears at these low accretion luminosities. However, the obscuration may have resulted from the gas infall driven by the merger rather than the accretion process. We report on several extra-nuclear sources with $L_{rm X}>10^{39}$ erg s$^{-1}$ and find that a spectral turnover is present below 10 keV in most such sources, in line with recent results on ultraluminous X-ray sources.
X-ray variation is a ubiquitous feature of active galactic nuclei (AGNs), however, its origin is not well understood. In this paper, we show that the X-ray flux variations in some AGNs, and correspondingly the power spectral densities (PSDs) of the v ariations, may be interpreted as being caused by absorptions of eclipsing clouds or clumps in the broad line region (BLR) and the dusty torus. By performing Monte-Carlo simulations for a number of plausible cloud models, we systematically investigate the statistics of the X-ray variations resulting from the cloud eclipsing and the PSDs of the variations. For these models, we show that the number of eclipsing events can be significant and the absorption column densities due to those eclipsing clouds can be in the range from 10^{21} to 10^{24} cm^{-2}, leading to significant X-ray variations. We find that the PSDs obtained from the mock observations for the X-ray flux and the absorption column density resulting from these models can be described by a broken double power law, similar to those directly measured from observations of some AGNs. The shape of the PSDs depend strongly on the kinematic structures and the intrinsic properties of the clouds in AGNs. We demonstrate that the X-ray eclipsing model can naturally lead to a strong correlation between the break frequencies (and correspondingly the break timescales) of the PSDs and the masses of the massive black holes (MBHs) in the model AGNs, which can be well consistent with the one obtained from observations. Future studies of the PSDs of the AGN X-ray (and possibly also the optical-UV) flux and column density variations may provide a powerful tool to constrain the structure of the BLR and the torus and to estimate the MBH masses in AGNs.
X-ray reverberation in Active Galactic Nuclei, believed to be the result of the reprocessing of coronal photons by the underlying accretion disc, has allowed us to probe the properties of the inner-most regions of the accretion flow and the central b lack hole. Our current model (KYNREFREV) computes the time-dependent reflection spectra of the disc as a response to a flash of primary power-law radiation from a point source corona located on the axis of the black hole accretion disc (lamp-post geometry). Full relativistic effects are taken into account. The ionization of the disc is set for each radius according to the amount of the incident primary flux and the density of the accretion disc. We detect wavy residuals around the best-fit reverberation model time lags at high frequencies. This result suggests that the simple lamp-post geometry does not fully explain the X-ray source/disc configuration in Active Galactic Nuclei. There has been a noticeable progress into the development of codes for extended coronae (Wilkins+16, Chainakun & Young 2017, Taylor & Reynolds 2018a,b). Indeed, the model from Chainakun & Young (2017), consisting of two axial point sources illuminating an accretion disc that produce the reverberation lags is able to reproduce the observed time-lag versus frequency spectra. The goal of this paper is to observationally justify the need for an extended corona in order to provide (in the near future) with a mathematical formulation of a model for an extended corona in its simplest form.
Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observational selection bias resulting from the spin-dependence of the radiative efficiency. We review recent progress in our understanding of fast (v~0.1-0.3c), highly-ionized (mainly visible in FeXXV and FeXXVI lines), high-column density winds that may dominate quasar-mode galactic feedback. Finally, we end with a brief look forward to the promise of Astro-H and future X-ray spectropolarimeters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا