ترغب بنشر مسار تعليمي؟ اضغط هنا

From WMAP to Planck: Exact reconstruction of 4- and 5-dimensional inflationary potential from high precision CMB measurements

104   0   0.0 ( 0 )
 نشر من قبل Lucia Popa
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L.A. Popa




اسأل ChatGPT حول البحث

We make a more general determination of the inflationary observables in the standard 4-D and 5-D single-field inflationary scenarios, by the exact reconstruction of the dynamics of the inflation potential during the observable inflation with minimal number of assumptions: the computation does not assume the slow-roll approximation and is valid in all regimes if the field is monotonically rolling down its potential. Making use of the {em Hamilton-Jacobi} formalism developed for the 5-D single-field inflation model,we compute the scale dependence of the amplitudes of the scalarand tensor perturbations by integrating the exact mode equation. We analyze the implications of the theoretical uncertainty in the determination of the reheating temperature after inflation on the observable predictions of inflation and evaluate its impact on the degeneracy of the standard inflation consistency relation.


قيم البحث

اقرأ أيضاً

We present a novel estimate of the cosmological microwave background (CMB) map by combining the two latest full-sky microwave surveys: WMAP nine-year and Planck PR1. The joint processing benefits from a recently introduced component separation method coined local-generalized morphological component analysis (LGMCA) based on the sparse distribution of the foregrounds in the wavelet domain. The proposed estimation procedure takes advantage of the IRIS 100 micron as an extra observation on the galactic center for enhanced dust removal. We show that this new CMB map presents several interesting aspects: i) it is a full sky map without using any inpainting or interpolating method, ii) foreground contamination is very low, iii) the Galactic center is very clean, with especially low dust contamination as measured by the cross-correlation between the estimated CMB map and the IRIS 100 micron map, and iv) it is free of thermal SZ contamination.
We use the Hamilton--Jacobi formalism to constrain the space of possible single field, inflationary Hubble flow trajectories when compared to the WMAP and Planck satellites Cosmic Microwave Background (CMB) results. This method yields posteriors on t he space of Hubble Slow Roll (HSR) parameters that uniquely determine the history of the Hubble parameter during the inflating epoch. The trajectories are used to numerically determine the observable primordial power spectrum and bispectra that can then be compared to observations. Our analysis is used to infer the most likely shape of the inflaton potential $V(phi)$ and also yields a prediction for, $f_{rm NL}$, the dimensionless amplitude of the non-Gaussian bispectrum.
We present cosmological constraints from the combination of the full mission 9-year WMAP release and small-scale temperature data from the pre-Planck ACT and SPT generation of instruments. This is an update of the analysis presented in Calabrese et a l. 2013 and highlights the impact on $Lambda$CDM cosmology of a 0.06 eV massive neutrino - which was assumed in the Planck analysis but not in the ACT/SPT analyses - and a Planck-cleaned measurement of the optical depth to reionization. We show that cosmological constraints are now strong enough that small differences in assumptions about reionization and neutrino mass give systematic differences which are clearly detectable in the data. We recommend that these updated results be used when comparing cosmological constraints from WMAP, ACT and SPT with other surveys or with current and future full-mission Planck cosmology. Cosmological parameter chains are publicly available on the NASAs LAMBDA data archive.
We present the first study of cross-correlation between Cosmic Microwave Background (CMB) gravitational lensing potential map measured by the $Planck$ satellite and $zgeq 0.8$ galaxies from the photometric redshift catalogues from Herschel Extragalac tic Legacy Project (HELP), divided into four sky patches: NGP, Herschel Stripe-82 and two halves of SGP field, covering in total $sim 660$ deg$^{2}$ of the sky. Contrary to previous studies exploiting only the common area between galaxy surveys and CMB lensing data, we improve the cross-correlation measurements using the full available area of the CMB lensing map. We estimate galaxy linear bias parameter, $b$, from joint analysis of cross-power spectrum and galaxy auto-power spectrum using Maximum Likelihood Estimation technique to obtain the value averaged over four fields as $b=2.06_{-0.02}^{+0.02}$, ranging from $1.94_{-0.03}^{+0.04}$ for SGP Part-2 to $3.03_{-0.09}^{+0.10}$ for NGP. We also estimate the amplitude of cross-correlation and find the averaged value to be $A=0.52_{-0.08}^{+0.08}$ spanning from $0.34_{-0.19}^{+0.19}$ for NGP to $0.67_{-0.20}^{+0.21}$ for SGP Part-1 respectively, significantly lower than expected value for the standard cosmological model. We perform several tests on systematic errors that can account for this discrepancy. We find that lower amplitude could be to some extent explained by the lower value of median redshift of the catalogue, however, we do not have any evidence that redshifts are systematically overestimated.
The mass of galaxy clusters is not a direct observable, nonetheless it is commonly used to probe cosmological models. Based on the combination of all main cluster observables, that is, the X-ray emission, the thermal Sunyaev-Zeldovich (SZ) signal, th e velocity dispersion of the cluster galaxies, and gravitational lensing, the gravitational potential of galaxy clusters can be jointly reconstructed. We derive the two main ingredients required for this joint reconstruction: the potentials individually reconstructed from the observables and their covariance matrices, which act as a weight in the joint reconstruction. We show here the method to derive these quantities. The result of the joint reconstruction applied to a real cluster will be discussed in a forthcoming paper. We apply the Richardson-Lucy deprojection algorithm to data on a two-dimensional (2D) grid. We first test the 2D deprojection algorithm on a $beta$-profile. Assuming hydrostatic equilibrium, we further reconstruct the gravitational potential of a simulated galaxy cluster based on synthetic SZ and X-ray data. We then reconstruct the projected gravitational potential of the massive and dynamically active cluster Abell 2142, based on the X-ray observations collected with XMM-Newton and the SZ observations from the Planck satellite. Finally, we compute the covariance matrix of the projected reconstructed potential of the cluster Abell 2142 based on the X-ray measurements collected with XMM-Newton. The gravitational potentials of the simulated cluster recovered from synthetic X-ray and SZ data are consistent, even though the potential reconstructed from X-rays shows larger deviations from the true potential. Regarding Abell 2142, the projected gravitational cluster potentials recovered from SZ and X-ray data reproduce well the projected potential inferred from gravitational-lensing observations. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا