ترغب بنشر مسار تعليمي؟ اضغط هنا

A non-existence theorem of classical electrodynamics in odd-dimensional spacetimes is shown to be invalid. The source of the error is pointed out, and is then demonstrated during the derivation of the fields generated by a uniformly moving point source.
The Stueckelberg formulation of a manifestly covariant relativistic classical and quantum mechanics is briefly reviewed and it is shown that in this framework a simple (semiclassical) model exists for the description of neutrino oscillations. The mod el is shown to be consistent with the field equations and the Lorentz force (developed here without and with spin by canonical methods) for Glashow-Salam-Weinberg type non-Abelian fields interacting with the leptons. We discuss a possible fundamental mechanism, in the context of a relativistic theory of spin for (first quantized) quantum mechanical systems, for CP violation. The model also predicts a possibly small pull back, i.e., early arrival of a neutrino beam, for which the neutrino motion is almost everywhere within the light cone, a result which may emerge from future long baseline experiments designed to investigate neutrino transit times with significantly higher accuracy than presently available.
Offshell electrodynamics based on a manifestly covariant off-shell relativistic dynamics of Stueckelberg, Horwitz and Piron, is five-dimensional. In this paper, we study the problem of radiation reaction of a particle in motion in this framework. In particular, the case of above-mass-shell is studied in detail, where the renormalization of the Lorentz force leads to a system of non-linear differential equations for 3 Lorentz scalars. The system is then solved numerically, where it is shown that the mass-shell deviation scalar $ve$ either smoothly falls down to 0 (this result provides a mechanism for the mass stability of the off-shell theory), or strongly diverges under more extreme conditions. In both cases, no runaway motion is observed. Stability analysis indicates that the system seems to have chaotic behavior in the divergent case. It is also shown that, although a motion under which the mass-shell deviation $ve$ is constant but not-zero, is indeed possible, but, it is unstable, and eventually it either decays to 0 or diverges.
In previous paper derivations of the Green function have been given for 5D off-shell electrodynamics in the framework of the manifestly covariant relativistic dynamics of Stueckelberg (with invariant evolution parameter $tau$). In this paper, we reco ncile these derivations resulting in different explicit forms, and relate our results to the conventional fundamental solutions of linear 5D wave equations published in the mathematical literature. We give physical arguments for the choice of the Green function retarded in the fifth variable $tau$.
We present direct imaging of the emission pattern of individual chromium-based single photon emitters in diamond and measure their quantum efficiency. By imaging the excited state transition dipole intensity distribution in the back focal plane of hi gh numerical aperture objective, we determined that the emission dipole is oriented nearly orthogonal to the diamond-air interface. Employing ion implantation techniques, the emitters were engineered with various proximities from the diamond-air interface. By comparing the decay rates from the single chromium emitters at different depths in the diamond crystal, an average quantum efficiency of 28% was measured.
In this paper, we study the optical properties of single defects emitting in the near infrared in nanodiamonds at liquid helium temperature. The nanodiamonds are synthesized using a microwave chemical vapor deposition method followed by nickel implan tation and annealing. We show that single defects exhibit several striking features at cryogenic temperature: the photoluminescence is strongly concentrated into a sharp zero-phonon line in the near infrared, the radiative lifetime is in the nanosecond range and the emission is perfectly linearly polarized. The spectral stability of the defects is then investigated. An optical resonance linewidth of 4 GHz is measured using resonant excitation on the zero-phonon line. Although Fourier-transform limited emission is not achieved, our results show that it might be possible to use consecutive photons emitted in the near infrared by single defects in diamond nanocrystals to perform two photon interference experiments, which are at the heart of linear quantum computing protocols.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا