ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging and quantum efficiency measurement of chromium emitters in diamond

40   0   0.0 ( 0 )
 نشر من قبل Stefania Castelletto DR
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present direct imaging of the emission pattern of individual chromium-based single photon emitters in diamond and measure their quantum efficiency. By imaging the excited state transition dipole intensity distribution in the back focal plane of high numerical aperture objective, we determined that the emission dipole is oriented nearly orthogonal to the diamond-air interface. Employing ion implantation techniques, the emitters were engineered with various proximities from the diamond-air interface. By comparing the decay rates from the single chromium emitters at different depths in the diamond crystal, an average quantum efficiency of 28% was measured.

قيم البحث

اقرأ أيضاً

Single photon emitters in two-dimensional materials are promising candidates for future generation of quantum photonic technologies. In this work, we experimentally determine the quantum efficiency (QE) of single photon emitters (SPE) in few-layer he xagonal boron nitride (hBN). We employ a metal hemisphere that is attached to the tip of an atomic force microscope to directly measure the lifetime variation of the SPEs as the tip approaches the hBN. This technique enables non-destructive, yet direct and absolute measurement of the QE of SPEs. We find that the emitters exhibit very high QEs approaching $(87 pm 7),%$ at wavelengths of $approx,580,mathrm{nm}$, which is amongst the highest QEs recorded for a solid state single photon emitter.
We report on quantum emission from Pb-related color centers in diamond following ion implantation and high temperature vacuum annealing. First-principles calculations predict a negatively-charged Pb-vacancy center in a split-vacancy configuration, wi th a zero-phonon transition around 2.3 eV. Cryogenic photoluminescence measurements performed on emitters in nanofabricated pillars reveal several transitions, including a prominent doublet near 520 nm. The splitting of this doublet, 2 THz, exceeds that reported for other group-IV centers. These observations are consistent with the PbV center, which is expected to have the combination of narrow optical transitions and stable spin states, making it a promising system for quantum network nodes.
66 - B. Vaucher , A. Nunnenkamp , 2008
We investigate how to create entangled states of ultracold atoms trapped in optical lattices by dynamically manipulating the shape of the lattice potential. We consider an additional potential (the superlattice) that allows both the splitting of each site into a double well potential, and the control of the height of potential barrier between sites. We use superlattice manipulations to perform entangling operations between neighbouring qubits encoded on the Zeeman levels of the atoms without having to perform transfers between the different vibrational states of the atoms. We show how to use superlattices to engineer many-body entangled states resilient to collective dephasing noise. Also, we present a method to realize a 2D resource for measurement-based quantum computing via Bell-pair measurements. We analyze measurement networks that allow the execution of quantum algorithms while maintaining the resilience properties of the system throughout the computation.
We present investigations on single Ni/Si related color centers produced via ion implantation into single crystalline type IIa CVD diamond. Testing different ion dose combinations we show that there is an upper limit for both the Ni and the Si dose 1 0^12/cm^2 and 10^10/cm^2 resp.) due to creation of excess fluorescent background. We demonstrate creation of Ni/Si related centers showing emission in the spectral range between 767nm and 775nm and narrow line-widths of 2nm FWHM at room temperature. Measurements of the intensity auto-correlation functions prove single-photon emission. The investigated color centers can be coarsely divided into two groups: Drawing from photon statistics and the degree of polarization in excitation and emission we find that some color centers behave as two-level, single-dipole systems whereas other centers exhibit three levels and contributions from two orthogonal dipoles. In addition, some color centers feature stable and bright emission with saturation count rates up to 78kcounts/s whereas others show fluctuating count rates and three-level blinking.
Efficient collection of fluorescence from nitrogen vacancy (NV) centers in diamond underlies the spin-dependent optical read-out that is necessary for quantum information processing and enhanced sensing applications. The optical collection efficiency from NVs within diamond substrates is limited primarily due to the high refractive index of diamond and the non-directional dipole emission. Here we introduce a light collection strategy based on chirped, circular dielectric gratings that can be fabricated on a bulk diamond substrate to redirect an emitters far-field radiation pattern. Using a genetic optimization algorithm, these grating designs achieve 98.9% collection efficiency for the NV zero-phonon emission line, collected from the back surface of the diamond with an objective of aperture 0.9. Across the broadband emission spectrum of the NV (600-800 nm), the chirped grating achieves 82.2% collection efficiency into a numerical aperture of 1.42, corresponding to an oil immersion objective again on the back side of the diamond. Our proposed bulk-dielectric grating structures are applicable to other optically active solid state quantum emitters in high index host materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا