ترغب بنشر مسار تعليمي؟ اضغط هنا

On a no-go theorem for classical Maxwell-Lorentz electrodynamics in odd-dimensional worlds

82   0   0.0 ( 0 )
 نشر من قبل Igal Aharonovich
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A non-existence theorem of classical electrodynamics in odd-dimensional spacetimes is shown to be invalid. The source of the error is pointed out, and is then demonstrated during the derivation of the fields generated by a uniformly moving point source.

قيم البحث

اقرأ أيضاً

155 - N.D. Hari Dass 2002
A general framework for studying compactifications in supergravity and string theories was introduced by Candelas, Horowitz, Strominger and Witten. This was further generalised to take into account the warp factor by de Wit, Smit and Hari Dass. Thoug h the prime focus of the latter was to find solutions with nontrivial warp factors (shown not to exist under a variety of circumstances), it was shown there that de Sitter compactifications are generically disfavoured. In this note we place these results in the context of a revived interest in de Sitter spacetimes .
We show the existence of Lorentz invariant Berry phases generated, in the Stueckleberg-Horwitz-Piron manifestly covariant quantum theory (SHP), by a perturbed four dimensional harmonic oscillator. These phases are associated with a fractional perturb ation of the azimuthal symmetry of the oscillator. They are computed numerically by using time independent perturbation theory and the definition of the Berry phase generalized to the framework of SHP relativistic quantum theory.
Offshell electrodynamics based on a manifestly covariant off-shell relativistic dynamics of Stueckelberg, Horwitz and Piron, is five-dimensional. In this paper, we study the problem of radiation reaction of a particle in motion in this framework. In particular, the case of above-mass-shell is studied in detail, where the renormalization of the Lorentz force leads to a system of non-linear differential equations for 3 Lorentz scalars. The system is then solved numerically, where it is shown that the mass-shell deviation scalar $ve$ either smoothly falls down to 0 (this result provides a mechanism for the mass stability of the off-shell theory), or strongly diverges under more extreme conditions. In both cases, no runaway motion is observed. Stability analysis indicates that the system seems to have chaotic behavior in the divergent case. It is also shown that, although a motion under which the mass-shell deviation $ve$ is constant but not-zero, is indeed possible, but, it is unstable, and eventually it either decays to 0 or diverges.
We introduce fully SGUTs, SUSY grand unified theories that, upon symmetry breaking through the Higgs mechanism, decompose into a visible sector and an extra sector where the dynamics of the extra sector gauge group is responsible for SUSY breaking. F ully SGUTs thus have the important feature that all gauge groups of the visible sector and the extra sector unify into a simple gauge group at the SGUT scale, therefore generalizing the successful MSSM gauge coupling unification to all the gauge couplings of the theory. By focusing on the ISS SUSY-breaking mechanism in the extra sector, we show that it is impossible to reproduce the MSSM matter content when there exists a metastable ISS SUSY-breaking state.
This paper is dedicated to the study of interactions between external sources for the electromagnetic field in a model which exhibits Lorentz symmetry breaking. We investigate such interactions in the CPT-even photon sector of the Standard Model Exte nsion (SME), where the Lorentz symmetry breaking is caused by a background tensor $K_{(F)alphabetasigmatau}$. Since the background tensor is very tiny, we treat it perturbatively up to first order and we focus on physical phenomena which have no counterpart in Maxwell electrodynamics. We consider effects related to field sources describing point-like charges, straight line currents and Dirac strings. We also investigate the so called Aharonov-Bohm bound states in a Lorentz-symmetry breaking scenario. We use atomic experimental data to verify if we could impose upper bounds to the Lorentz-symmetry breaking parameters involved. We also use some overestimated constrains for the Lorentz-symmetry breaking parameters in order to investigate if the obtained results could be relevant for condensed matter systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا