ترغب بنشر مسار تعليمي؟ اضغط هنا

We develop a systematic procedure to quantize canonically Hamiltonians of light-matter models of transmission lines coupled through lumped linear lossless ideal nonreciprocal elements, that break time-reversal symmetry, in a circuit QED set-up. This is achieved through a description of the distributed subsystems in terms of both flux and charge fields. We prove that this apparent redundancy is required for the general derivation of the Hamiltonian for a wider class of networks. By making use of the electromagnetic duality symmetry in 1+1 dimensions, we provide unambiguous identification of the physical degrees of freedom, separating out the nondynamical parts. This doubled description can also treat the case of other extended lumped interactions in a regular manner that presents no spurious divergences, as we show explicitly in the example of a circulator connected to a Josephson junction through a transmission line. This theory enhances the quantum engineering toolbox to design complex networks with nonreciprocal elements.
Fast nonadiabatic control protocols known as shortcuts to adiabaticity have found a plethora of applications, but their use has been severely limited to speeding up the dynamics of isolated quantum systems. We introduce shortcuts for open quantum pro cesses that make possible the fast control of Gaussian states in non-unitary processes. Specifically, we provide the time modulation of the trap frequency and dephasing strength that allow preparing an arbitrary thermal state in a finite time. Experimental implementation can be done via stochastic parametric driving or continuous measurements, readily accessible in a variety of platforms.
Nonreciprocal devices effectively mimic the breaking of time-reversal symmetry for the subspace of dynamical variables that they couple, and can be used to create chiral information processing networks. We study the systematic inclusion of ideal gyra tors and circulators into Lagrangian and Hamiltonian descriptions of lumped-element electrical networks. The proposed theory is of wide applicability in general nonreciprocal networks on the quantum regime. We apply it to pedagogical and pathological examples of circuits containing Josephson junctions and ideal nonreciprocal elements described by admittance matrices, and compare it with the more involved treatment of circuits based on nonreciprocal devices characterized by impedance or scattering matrices. Finally, we discuss the dual quantization of circuits containing phase-slip junctions and nonreciprocal devices.
An unstable quantum state generally decays following an exponential law, as environmental decoherence is expected to prevent the decay products from recombining to reconstruct the initial state. Here we show the existence of deviations from exponenti al decay in open quantum systems under very general conditions. Our results are illustrated with the exact dynamics under quantum Brownian motion and suggest an explanation of recent experimental observations.
The controllability of current quantum technologies allows to implement spin-boson models where two-photon couplings are the dominating terms of light-matter interaction. In this case, when the coupling strength becomes comparable with the characteri stic frequencies, a spectral collapse can take place, i.e. the discrete system spectrum can collapse into a continuous band. Here, we analyze the thermodynamic limit of the two-photon Dicke model, which describes the interaction of an ensemble of qubits with a single bosonic mode. We find that there exists a parameter regime where two-photon interactions induce a superradiant phase transition, before the spectral collapse occurs. Furthermore, we extend the mean-field analysis by considering second-order quantum fluctuations terms, in order to analyze the low-energy spectrum and compare the critical behavior with the one-photon case.
We propose the digital quantum simulation of a minimal AdS/CFT model in controllable quantum platforms. We consider the Sachdev-Ye-Kitaev model describing interacting Majorana fermions with randomly distributed all-to-all couplings, encoding nonlocal fermionic operators onto qubits to efficiently implement their dynamics via digital techniques. Moreover, we also give a method for probing non-equilibrium dynamics and the scrambling of information. Finally, our approach serves as a protocol for reproducing a simplified low-dimensional model of quantum gravity in advanced quantum platforms as trapped ions and superconducting circuits.
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quanti zed models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.
Two-photon processes have so far been considered only as resulting from frequency-matched second-order expansions of light-matter interaction, with consequently small coupling strengths. However, a variety of novel physical phenomena arises when such coupling values become comparable with the system characteristic frequencies. Here, we propose a realistic implementation of two-photon quantum Rabi and Dicke models in trapped-ion technologies. In this case, effective two-phonon processes can be explored in all relevant parameter regimes. In particular, we show that an ion chain under bichromatic laser drivings exhibits a rich dynamics and highly counterintuitive spectral features, such as interaction-induced spectral collapse.
We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.
73 - I. L. Egusquiza 2013
We restate the adiabatic elimination approximation as the first term in a singular perturbation expansion. We use the invariant manifold formalism for singular perturbations in dynamical systems to identify systematic improvements on adiabatic elimin ation, connecting with well established quantum mechanical perturbation methods. We prove convergence of the expansions when energy scales are well separated. We state and solve the problem of hermiticity of improved effective hamiltonians.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا