ﻻ يوجد ملخص باللغة العربية
The controllability of current quantum technologies allows to implement spin-boson models where two-photon couplings are the dominating terms of light-matter interaction. In this case, when the coupling strength becomes comparable with the characteristic frequencies, a spectral collapse can take place, i.e. the discrete system spectrum can collapse into a continuous band. Here, we analyze the thermodynamic limit of the two-photon Dicke model, which describes the interaction of an ensemble of qubits with a single bosonic mode. We find that there exists a parameter regime where two-photon interactions induce a superradiant phase transition, before the spectral collapse occurs. Furthermore, we extend the mean-field analysis by considering second-order quantum fluctuations terms, in order to analyze the low-energy spectrum and compare the critical behavior with the one-photon case.
We study effective light-matter interactions in a circuit QED system consisting of a single $LC$ resonator, which is coupled symmetrically to multiple superconducting qubits. Starting from a minimal circuit model, we demonstrate that in addition to t
We explore photon coincidence counting statistics in the ultrastrong-coupling regime where the atom-cavity coupling rate becomes comparable to the cavity resonance frequency. In this regime usual normal order correlation functions fail to describe th
Reaching the strong coupling regime of light-matter interaction has led to an impressive development in fundamental quantum physics and applications to quantum information processing. Latests advances in different quantum technologies, like supercond
In a view of recent proposals for the realization of anisotropic light-matter interaction in such platforms as (i) non-stationary or inductively and capacitively coupled superconducting qubits, (ii) atoms in crossed fields and (iii) semiconductor het
We study a circuit QED setup where multiple superconducting qubits are ultrastrongly coupled to a single radio-frequency resonator. In this extreme parameter regime of cavity QED the dynamics of the electromagnetic mode is very slow compared to all o