ترغب بنشر مسار تعليمي؟ اضغط هنا

Biodiversity and extinction are central issues in evolution. Dynamical balance among different species in ecosystems is often described by deterministic replicator equations with moderate success. However, fluctuations are inevitable, either caused b y external environment or intrinsic random competitions in finite populations, and the evolutionary dynamics is stochastic in nature. Here we show that, after appropriate coarse-graining, random fluctuations generate dissipation towards extinction because the evolution trajectories in the phase space of all competing species possess positive curvature. As a demonstrating example, we compare the fluctuation-induced dissipative dynamics in Lotka-Volterra model with numerical simulations and find impressive agreement. Our finding is closely related to the fluctuation-dissipation theorem in statistical mechanics but the marked difference is the non-equilibrium essence of the generic evolutionary dynamics. As the evolving ecosystems are far from equilibrium, the relation between fluctuations and dissipations is often complicated and dependent on microscopic details. It is thus remarkable that the generic positivity of the trajectory curvature warrants dissipation arisen from the seemingly harmless fluctuations. The unexpected dissipative dynamics is beyond the reach of conventional replicator equations and plays a crucial role in investigating the biodiversity in ecosystems.
Carrier-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction plays an important role in itinerant magnetism. There have been intense interest on its general trend on bipartite lattice with particle-hole symmetry. In particular, recently fabricat ed graphene is well described by the honeycomb lattice within tight-binding approximation. We use SUSY quantum mechanics to study the RKKY interaction on bipartite lattices. The SUSY structure naturally differentiate the zero modes and those paired states at finite energies. The significant role of zero modes is largely ignored in previous literature because their measure is often zero in the thermodynamic limit. Employing both real-time and imaginary-time formalism, we arrive at the same conclusion: The RKKY interaction for impurity spins on different sublattices is always antiferromagnetic. However, for impurity spins on the same sublattice, the carrier-mediated RKKY interaction is not always ferromagnetic. Only in the absence of zero modes, the sign rule on the bipartite lattice holds true. Our finding highlight the importance of the zero modes in bipartite lattices. Their significance needs further investigation and may lead to important advances in carrier-mediated magnetism.
In previous studies, we proposed a scaling ansatz for electron-electron interactions under renormalization group transformation. With the inclusion of phonon-mediated interactions, we show that the scaling ansatz, characterized by the divergent logar ithmic length $l_d$ and a set of renormalization-group exponents, also works rather well. The superconducting phases in a doped two-leg ladder are studied and classified by these renormalization-group exponents as demonstration. Finally, non-trivial constraints among the exponents are derived and explained.
We investigate pairing mechanism in multiband superconductors. To put our feet on firm ground, unbiased renormalization group analysis is carried out for iron-based superconductors. It is quite remarkable that, after integrating out quantum fluctuati ons, the renormalization-group flows agree exceedingly well with a mean-field Hamiltonian where interband pair hopping plays an essential role. Through interband pair hopping, electrons can overcome the repulsive interaction between them and form resonating Cooper pairs between different bands. Unlike the conventional superconductors, the pairing mechanism in multiband superconductors is resonating pair hopping between different bands, just like the resonating chemical bonds in benzene. The effective mean-field Hamiltonian spots a small parameter dictating the critical temperature and also explains how interband pair hopping always enahnces spin fluctuations at the nesting momentum connecting the Fermi surfaces. In short, no attractive glue is needed and resonating interband pair hopping is the key to Cooper pair formation in unconventional superconductors. Implications to cuprates and related issues are also discussed at the end.
We investigate the error threshold for the emergence of quasispecies in the Eigen model. By mapping to to an effective Hamiltonian ruled by the imaginary-time Schrodinger equation, a variational ansatz is proposed and applied to calculate various qua ntities associated with the quasispecies. The variational ansatz gives correct predictions for the survival population of the wild-type sequence and also reveals an unexpected universal scaling behaviors near the error threshold. We check the validity of the variational ansatz by numerical methods and find excellent agreement. Though the emergence of the scaling behaviors is not yet fully understood, it is remarkable that the universal scaling function reigns even for relatively short genome length such as L=16. Further investigations may reveal the mechanism of the universal scaling and extract the essential ingredients for the emergence of the quasispecies in molecular evolution.
Carrier-mediated exchange coupling, known as Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, plays a fundamental role in itinerant ferromagnetism and has great application potentials in spintronics. A recent theorem based on the imaginary-time meth od shows that the oscillatory RKKY interaction becomes commensurate on bipartite lattice and predicts that the effective exchange coupling is always ferromagnetic for the same sublattice but antiferromagnetic for opposite sublattices. We revisit this important problem by real- and imaginary-time methods and find the theorem misses important contributions from zero modes. To illustrate the importance of zero modes, we study the spin susceptibility in graphene nanoribbons numerically. The effective exchange coupling is largest on the edges but does not follow the predictions from the theorem.
The effects of magnetic doping on a EuB_6 single crystal were investigated based on magnetic and transport measurements. A modest 5% Sm substitution for Eu changes the magnetic and transport properties dramatically and gives rise to concurrent antife rromagnetic and metal-insulator transitions (MIT) from ferromagnetic MIT for EuB6. Magnetic doping simultaneously changes the itinerant carrier density and the magnetic interactions. We discuss the origin of the concurrent magnetic MIT in (Eu,Sm)B_6.
It is generally believed that a point defect in graphene gives rise to an impurity state at zero energy and causes a sharp peak in the local density of states near the defect site. We revisit the defect problem in graphene and find the general consen sus incorrect. By both analytic and numeric methods, we show that the contribution to the local density of states from the impurity state vanishes in the thermodynamic limit. Instead, the pronounced peak of the zero-bias anomaly is a power-law singularity $1/|E|$ from infinite resonant peaks in the low-energy regime induced by the defect. Our finding shows that the peak shall be viewed as a collective phenomenon rather than a single impurity state in previous studies.
We revisit correlation effects in doped metallic zigzag carbon nanotubes by using both the one-loop renormalization group and non-perturbative bosonization techniques. Note that, if a nanotube is placed near a conducting plate, the long-range Coulomb interactions are screened and the resulting short-range interactions can be modelled by on-site and nearest-neighbor repulsive interactions $U$, $V$ and $V_{perp}$ respectively. Using both analytic and numeric means, we determine the phase diagram of the ground states. For $U/t<0.5$ ($t$ is the hopping strength), dynamical symmetry enlargement occurs and the low-energy excitations are described by the SO(6) Gross-Neveu model. However, for realistic material parameters $U/t sim mathcal{O}(1)$, the charge sector decouples but there remains an enlarged SO(4) symmetry in the spin sector.
135 - J. E. Bunder , Hsiu-Hau Lin 2008
We derive a Hamiltonian for a two-leg ladder which includes an arbitrary number of charge and spin interactions. To illustrate this Hamiltonian we consider two examples and use a renormalization group technique to evaluate the ground state phases. Th e first example is a two-leg ladder with zigzagged legs. We find that increasing the number of interactions in such a two-leg ladder may result in a richer phase diagram, particularly at half-filling where a few exotic phases are possible when the number of interactions are large and the angle of the zigzag is small. In the second example we determine under which conditions a two-leg ladder at quarter-filling is able to support a Tomanaga-Luttinger liquid phase. We show that this is only possible when the spin interactions across the rungs are ferromagnetic. In both examples we focus on lithium purple bronze, a two-leg ladder with zigzagged legs which is though to support a Tomanaga-Luttinger liquid phase.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا