ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work we marry multi-index Monte Carlo with ensemble Kalman filtering (EnKF) to produce the multi-index EnKF method (MIEnKF). The MIEnKF method is based on independent samples of four-coupled EnKF estimators on a multi-index hierarchy of resol ution levels, and it may be viewed as an extension of the multilevel EnKF (MLEnKF) method developed by the same authors in 2020. Multi-index here refers to a two-index method, consisting of a hierarchy of EnKF estimators that are coupled in two degrees of freedom: time discretization and ensemble size. Under certain assumptions, the MIEnKF method is proven to be more tractable than EnKF and MLEnKF, and this is also verified in numerical examples.
By employing a system of interacting stochastic particles as an approximation of the McKean--Vlasov equation and utilizing classical stochastic analysis tools, namely It^os formula and Kolmogorov--Chentsov continuity theorem, we prove the existence a nd uniqueness of strong solutions for a broad class of McKean--Vlasov equations. Considering an increasing number of particles in the approximating stochastic particle system, we also prove the $L^p$ strong convergence rate and derive the weak convergence rates using the Kolmogorov backward equation and variations of the stochastic particle system. Our convergence rates were verified by numerical experiments which also indicate that the assumptions made here and in the literature can be relaxed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا