ﻻ يوجد ملخص باللغة العربية
In this work we marry multi-index Monte Carlo with ensemble Kalman filtering (EnKF) to produce the multi-index EnKF method (MIEnKF). The MIEnKF method is based on independent samples of four-coupled EnKF estimators on a multi-index hierarchy of resolution levels, and it may be viewed as an extension of the multilevel EnKF (MLEnKF) method developed by the same authors in 2020. Multi-index here refers to a two-index method, consisting of a hierarchy of EnKF estimators that are coupled in two degrees of freedom: time discretization and ensemble size. Under certain assumptions, the MIEnKF method is proven to be more tractable than EnKF and MLEnKF, and this is also verified in numerical examples.
We present a novel algorithm based on the ensemble Kalman filter to solve inverse problems involving multiscale elliptic partial differential equations. Our method is based on numerical homogenization and finite element discretization and allows to r
Ensemble Kalman Sampler (EKS) is a method to find approximately $i.i.d.$ samples from a target distribution. As of today, why the algorithm works and how it converges is mostly unknown. The continuous version of the algorithm is a set of coupled stoc
This work develops a new multifidelity ensemble Kalman filter (MFEnKF) algorithm based on linear control variate framework. The approach allows for rigorous multifidelity extensions of the EnKF, where the uncertainty in coarser fidelities in the hier
Ensemble Kalman Inversion (EnKI) and Ensemble Square Root Filter (EnSRF) are popular sampling methods for obtaining a target posterior distribution. They can be seem as one step (the analysis step) in the data assimilation method Ensemble Kalman Filt
A useful approach to solve inverse problems is to pair the parameter-to-data map with a stochastic dynamical system for the parameter, and then employ techniques from filtering to estimate the parameter given the data. Three classical approaches to f