ﻻ يوجد ملخص باللغة العربية
By employing a system of interacting stochastic particles as an approximation of the McKean--Vlasov equation and utilizing classical stochastic analysis tools, namely It^os formula and Kolmogorov--Chentsov continuity theorem, we prove the existence and uniqueness of strong solutions for a broad class of McKean--Vlasov equations. Considering an increasing number of particles in the approximating stochastic particle system, we also prove the $L^p$ strong convergence rate and derive the weak convergence rates using the Kolmogorov backward equation and variations of the stochastic particle system. Our convergence rates were verified by numerical experiments which also indicate that the assumptions made here and in the literature can be relaxed.
In this paper, we consider the averaging principle for a class of McKean-Vlasov stochastic differential equations with slow and fast time-scales. Under some proper assumptions on the coefficients, we first prove that the slow component strongly conve
In this paper, we aim to study the asymptotic behaviour for a class of McKean-Vlasov stochastic partial differential equations with slow and fast time-scales. Using the variational approach and classical Khasminskii time discretization, we show that
We present a simple uniqueness argument for a collection of McKean-Vlasov problems that have seen recent interest. Our first result shows that, in the weak feedback regime, there is global uniqueness for a very general class of random drivers. By wea
This note shows how to considerably strengthen the usual mode of convergence of an $n$-particle system to its McKean-Vlasov limit, often known as propagation of chaos, when the volatility coefficient is nondegenerate and involves no interaction term.
We consider a class of semilinear Volterra type stochastic evolution equation driven by multiplicative Gaussian noise. The memory kernel, not necessarily analytic, is such that the deterministic linear equation exhibits a parabolic character. Under a