ترغب بنشر مسار تعليمي؟ اضغط هنا

As an emerging technique for confidential computing, trusted execution environment (TEE) receives a lot of attention. To better develop, deploy, and run secure applications on a TEE platform such as Intels SGX, both academic and industrial teams have devoted much effort to developing reliable and convenient TEE containers. In this paper, we studied the isolation strategies of 15 existing TEE containers to protect secure applications from potentially malicious operating systems (OS) or untrusted applications, using a semi-automatic approach combining a feedback-guided analyzer with manual code review. Our analysis reveals the isolation protection each of these TEE containers enforces, and their security weaknesses. We observe that none of the existing TEE containers can fulfill the goal they set, due to various pitfalls in their design and implementation. We report the lessons learnt from our study for guiding the development of more secure containers, and further discuss the trend of TEE container designs. We also release our analyzer that helps evaluate the container middleware both from the enclave and from the kernel.
Osteopenia is indicated as a common phenomenon in patients who have scoliosis. Quantitative ultrasound (QUS) has been used to assess skeletal status for decades, and recently ultrasound imaging using reflection signals from vertebra were as well appl ied to measure spinal curvatures on children with scoliosis. The objectives of this study are to develop a new method which can robustly extract a parameter from ultrasound spinal data for estimating bone quality of scoliotic patients and to investigate the potential for the parameter on predicting curve progression. The frequency amplitude index (FAI) was calculated based on the spectrum of the original radio frequency (RF) signals reflected from the tissue-vertebra interface. The correlation between FAI and reflection coefficient was validated using decalcified bovine bone samples in vitro, and the FAIs of scoliotic subjects were investigated in vivo referring to BMI, Cobb angles and curve progression status. The results showed that the intra-rater measures were highly reliable between different trials (ICC=0.997). The FAI value was strongly correlated to the reflection coefficient of bone tissue ($R^{2}=0.824$), and the lower FAI indicated the higher risk of curve progression for the non-mild cases. This preliminary study reported that the FAI method can provide a feasible and promising approach to assess bone quality and monitor curve progression of the patients who have AIS.
220 - Hongbo Cheng , Yue Zhong 2019
We consider the evolution of black hole involving an $f(R)$ global monopole based on the Extended Uncertainty Principle (EUP). The black hole evolutions refer to the instability due to the Parikh-Kraus-Wilczeck tunneling radiation or fragmentation. I t is found that the EUP corrections make the entropy difference larger to encourage the black hole to radiate more greatly. We also show that the appearance of the EUP effects result in the black holes division. The influence from global monopole and the revision of general relativity can also adjust the black hole evolution simultaneously, but can not change the final result that the black hole will not be stable because of the EUPs effects.
195 - Yue Zhong , Hongbo Cheng 2018
The analytical description on the Friedberg-Lee-Sirlin typed Q-balls is performed. The two-field Q-balls are also discussed under the one-loop motivated effective potential subject to the temperature. We prove strictly to confirm that the parameters from the potential can be regulated to lead the energy per unit charge of Q-balls to be lower to keep the model stable. If the energy density is low enough, the Q-balls can become candidates of dark matter. It is also shown rigorously that the two-field Q-balls can generate in the first-order phase transition and survive while they are affected by the expansion of the universe. The analytical investigations show that the Q-balls with one-loop motivated effective potential can exist with the adjustment of coefficients of terms. We cancel the infinity in the energy to obtain the necessary conditions consist with those imposed in the previous work. According to the explicit expressions, the lower temperature will reduce the energy density, so there probably have been more and more stable Friedberg-Lee-Sirlin typed Q-balls to become the dark matter in the expansion of the universe.
We discuss the $U(1)$ gauged Q-balls with $N$-power potential to examine their properties analytically. More numerical descriptions and some analytical consideration have been contributed to the models governed by four-power potential. We also demons trate strictly some new limitations that the stable $U(1)$ gauged Q-balls should accept instead of estimating those with only some specific values of model variables numerically. Having derived the explicit expressions of radius, the Noether charge and energy of the gauged Q-balls, we find that these models under the potential of matter field with general power and the boundary conditions will exist instead of dispersing and decaying. The Noether charge of the large gauged Q-balls must be limited. The mass parameter of the model can not be tiny.
The fragmentation of black hole containing $f(R)$ global monopole under GUP is studied. We focus on that the black hole breaks into two parts. We derive the entropies of the initial black hole and the broken parts while the generalization of Heisenbe rgs uncertainty principle is introduced. We find that the $f(R)$ global monopole black hole keeps stable instead of breaking because the entropy difference is negative without the generalization. The fragmentation of the black hole will happen if the black hole entropies are limited by the GUP and the considerable deviation from the general relativity leads the case that the mass of one fragmented black hole is extremely small and the other one is extremely large.
We further the investigation on the Parikh-Kraus-Wilczeck tunneling radiation of Kehagias-Sfetsos black hole under the generalized uncertainty principle. We obtain the entropy difference involving the influence from the inequality. The two terms as g eneralizations of the Heisenbergs uncertainty promote or retard the emission of this kind of black holes respectively.
The Parikh-Kraus-Wilczeck tunneling radiation of black hole involving a $f(R)$ global monopole is considered based on the generalized uncertainty principle. The influences from global monopole, $f(R)$ gravity and the corrections to the uncertainty ap pear in the expression of black hole entropy difference. It is found that the global monopole and the revision of general relativity both hinder the black hole from emitting the photons. The two parts as corrections to the uncertainty make the entropy difference of this kind of black hole larger or smaller respectively.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا